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1 The Walsh—Lebesgue Theorem
This can be expressed as follows:
Let X =0bdy Y, where Y ¢ Cis compact andC — Y is connected.

Then the (real-valued) harmonic polynomials are uniformly dense
in Re C(X), the space of real-valued continuous functions on X.

If fi,...,fn are complex-valued continuous functions on a space
X, let P(fy,...fa)=Clf1,...,/s) denote the algebra of all
polynomials in fy,...,f,, with complex coefficients, regarded

as a subalgebra of C(X). Then the conclusion of the Walsh—Lebesgue
theorem can be stated in the form: the vector-space sum P(z) +
P(Z) is uniformly dense in C(X).

By a problem of “Walsh—Lebesgue type I mean the following
kind of thing. Let 4, and 4, be subalgebras of a Banach algebra 4.
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Describe the closure of A; + A4,. There are many such problems

in analysis. I shall not attempt a general survey or a systematic )

analysis. 1 shall simply present a few results and examples on l%v

problems of this type.
First 1 shall discuss some approximation results on the circle.

Then I shall give an honest generalization of the Walsh—Lebesgue I“§
theorem. Finally, 1 shall discuss approximation by real-valued _ “‘f“
functions.

2 Approximation on the Circle

Let S denote the unit circle, and D the open unit disk. Weierstrass .

proved that P(z, Z) is dense in C(S). Nowadays we regard this result .
as a special case of Stone’s theorem. But Stone’s theorem is really . :
a result about real algebras, in view of the hypothesis about complex '
conjugation. Dissatisfaction with this aspect of the matter led to

much research, and one of the most striking results is Wermer'’s .

maximality theorem [6]: :

Suppose f€ C(S)~A(D). (A(D) denotes the disk algebra, the
algebra of all functions in C(S) which extend continuously and .
analytically over D). Then P(z, f) is dense in C(S). In other words,
the only property of z that matters in Weierstrass® result is the fact
that it is not analytic.

The space P(z,z) of trigonometric polynomials on S can also
be written as P(z) + P(z). This suggests another line of investigation: i
for which f € C(S) is P(z) + P(f) dense in C(S)? This time, something .%

£

more is required of f than non-analyticity. For instance, P(z) + P(z?)
is not dense in C(S), since

L g(z)dz = 0

whenever g €P(z) + P(z2). The general problem remains open,
but we have the following:

THEOREM 2.1. Let ¢:S = S be a homemorphism.

(a) (F. and M. Riesz) If ¢ is singular, then P(z) + P(¥) is dense
in C(S).

(b) (Browder and Wemmer) If ¢ is orientation-reversing, then
P(z) + P(y) is dense in C(S) [1].
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A singular homeomorphism is one which maps a set of full linear
measure on S into a set of zero measure. There are many such maps.
Condition (a) is a metric condition. Condition (b) is topological,
and is therefore more appropriate and satisfving in the context
of uniform approximation. It shows that, from this point of view,
the crucial property of z for Weierstrass’ theorem is that it reverses
orientation. Note that in (b), z can be replaced by any orientation-
preserving homeomorphism, so that the result concerns algebraic
and topological categories, not analytic categories.

To prove the theorem, let 4 be a measure on § which annihilates
P(z) + P(Y). Since u annihilates P(z), the F. and M. Riesz theorem
tells us that 4 = hd®, where h € H}, the space of functions in the
Hardy class H! which vanish at the origin. Defining the measure
Y= on S by the formula

| faven = | fowdn, 1 ora rece),
we have y.u 1 P(z), hence Y. = kd@, with k € H}. Assertion (a)

of the theorem follows at once. To see (b), suppose  is orientation-
reversing, and let !

8 S
Fe?) = [ k¢)ds;

]
i6
G(e®) = [ h(g)dg.
Then F, GEA(D), and G-y =F on S. An application of the
argument principle now shows that F(D) C F(S), so that if F is
non-constant, then it maps S onto a set with non-empty interior.
This is impossible, since F is absolutely-contintious. Thus F =0,
hence p = 0. The result follows.

We could ask which other self-adjoint Banach algebras 4 with
spectrum S can replace C(S) in Theorem 2.1 (b). It is easy to see
that the algebra of functions with absolutelv-convergent Fourer
seres will do. Garnett and 1 [2] obtained a partial positive result
for the algebra C!(S), and we also showed that there is an exampie
of ahomeomorphism ¢ € W!+! (the algebra of absolutely-continuous
functions on §) such that ¢ is direction-reversing but P(z) + P(¥/)
is not dense in W 1. The positive result is as follows.
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THEOREM 2.2. Let ¥:S— S be a C'*¢ direction-reversing homeo-
morphism, with y -y = z. Then

P(z) + P(Y) is dense in‘Cl (5).

Here C!*¢ means that the derivative dy/d8 satisfies a Holder con-
dition with exponent €. This result is proved by “welding” the circle
to produce a C'*¢? arc on the sphere, and reducing the assertion
to be proved to a statement about removable singularities for H*
classes with prescribed boundary behaviour. The example in Wi'! is
produced by reversing this procedure, and constructing an arc in
the sphere with positive continuous analytic capacity, such that
the harmonic measures for the two sides of the arc are mutually
absolutely-continuous. The details are in [2].

3 Generalized Walsh—Lebesgue Theorem

The following result removes the harmonic functions from the
Walsh—Lebesgue theorem, and leaves an algebraic and topological
statement {5].

THEOREM 3.1. Let @ and ¥ be horﬁe’omorphisms of C on C with
opposite orientations. Ler X =bdy Y, where Y CC, Y is compact,
and C ~ Y is connected. Then '

P(®) + P(W) is dense in C(X).

This also generalizes Theorem 2.1(b), in view of the Jordan-—
Schonflies thdorem. The proof is not a new proof of the Walsh—
Lebesgue theorem, because it uses both that theorem and 2.1(b).
The first step is to use the generalized F. and M. Riesz theorem to
localize to a single component U, of int Y. Here it is important
that harmonic measure for U, is supported on the set of accessible
boundary points (Fatou’s theorem), which is a set with a topological
description. The next step is to construct a direction-reversing
homeomorphism of the circle, induced by the conformal maps
to ®(U,) and ¥(U,) and the map ¥-&. It is crucial that the prime
ends of a simply-connected open set have a topological description.
After that, it is a technical matter to reduce to the Browder—Wermer
result.

|
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One of the applications of Theorem 3.1 is the following [5].

THEOREM 3.2. Ler &, ¥, and A be homeomorphisms of ConroC,
such thar & and ¥ have opposite orientations. Then

P(¢, IA1%) + PCY, [AL%)

is dense in C(X) for every compact X CC, and everv « > 0.

4 Real Functions

Now consider real-valued continuous functions on a compact
Hausdorff space X. Let 4; and 4, be uniformly closed real sub-
algebras of Re C(X), containing the constants. Think, for example,
of XCR? A, =closP(x), A, =closP(y); or XCR3, 4, =
clos P(x,y), A, = clos P(z).

Let X; be the compact quotient space of X obtained by identify-
ing ¢ and b whenever f(a) = f(b) for all f€4;. Let II;: X = X; be
the projection. If 4, + A, separates points on X, then II; x IT,: X —
X, x X, is injective.

In [4], Marshall and I consider the problems: (1) When is 4, +
A, dense in Re C(X)? (2) When is 4, + A, closed? We also work
on finitely-generated modules over 4,. We use abstract methods.
Many people have used constructive methods on these problems,
in the case of P(x)+ P(y), for instance Kolmogoroff, Havin,
Havinson, Diliberto and Strauss, Ofman, Sprecher, Golomb,
Mordashev, lbragimov and Babaev. Buck has worked on -the con-
nection with functional equations, and has established some special
cases of the following result, using abstract methods. There is also
a thesis by Overdeck, which at this time we havg not seen, which
may well contain other cases. ’

A trip in X with respect to (4,;, A, ) is a finite ordered sequence

ay,ds,...,a, of points of X with g;+, ¥ a; and either II,(a;)=
Oy(a;), My(as)=TM,(e;), I (a.)=1,(a3),..., or I (@)=
I,(ay), I (a3) =11, (az), My(as) =1I5(a3),... . A trip is a round

trip if a; = a,. Clearly, if 4; + A, separates points, then a round
trip must contain more than 2 points. The ordit of a pointa€X
is the set of all endpointsa, of tripsa,, . ..,a, witha; =a,.

A
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THEOREM 4.1. Suppose each orbit is closed in X. Then A, + A,
is dense in Re C(X) if and only if there are no round trips.

Proof. The map f— f-m; carries Re C(X;) isometrically onto A;,
by Stone—Weierstrass, hence a real measure g on X annihilates 4;
if and only if the projected measure 7;2 ¢ on X; is 0.

Suppose there are no round trips, and 4, + 4, is not dense.
Let B denote the unit sphere ofA;1 ﬁAé. By Krein—Milman, there
exists an extreme point g € B. By the last paragraph, the restriction
of u to any Borel set which is a union of orbits is an annihilating
measure. Let v be the positive measure induced by the total variation
measure g} on the (compact Hausdorff) space O of orbits. If v is
not a point mass, then we can write it as v; + v,, where v; = v|0;
is non-zero, and O = 0, U 0, is a Borel decomposition. This induces
a decomposition of u as u; + u,, where g; = u|E; is non-zero, and
E; is 2 Borel union of orbits. Thus u is not extreme. This contradic-
tion shows that p is supported on a single orbit E. Fix a € E. Let
Ey ={a}, E; =i (E)),E5s = 73" (E;), Ea =771 (E;), and so on.
Each E, is compact, and £ = U E,. There exists a first n with
[IE, > 0. We may assume that u+E, >0, where u= pu,—p_ is
the Haar decomposition. Choose F; C E,, such that F, is Borel,
F, supports u+l|E,, and u_(F,;)=0. There exists F, CE,,; ~E,
such that u_(F,) = u(F,) since otherwise there are round trips.
There exists F3 CE ., ~E,.4+; such that p.(F3)= u(F;), and
so on. The sets F, are pairwise disjoint, since there are no round trips.
Thus u has infinite total variation. This contradiction establishes
the theorem.

Havinson [3] has produced an ingenious example of a compact
set X CR? such that P(x)+ P(y) is not dense in Re C(X), vet
there are no round trips. Of course, the orbits are not closed, in
fact, they are all dense.

Current research focuses on the case of dense orbits, and also on
sums of more than two subalgebras.

5 Concluding Remarks

Problems of Walsh—Lebesgue type occur in a wide variety of areas.
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It might be worthwhile to develop the algebraic theory of the
categories SA = sums of algebras and FSA = finite sums of algebras.
Quite obviously, a sum of algebras is a module over-the intersection
an is contained in a unique enveloping algebra, and these properties
allow the transfer of many properties of modules and algebras to
this category.
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