INTEGRAL BINOMIAL COEFFICIENTS

ANTHONY G. O'FARRELL

ABSTRACT. We give a short proof, using topology, of a fact about the denominators of certain binomial coefficients.

1. Introduction

The binomial coefficients are defined by

$$\binom{\alpha}{k} = \frac{\alpha(\alpha - 1) \cdots (\alpha - k + 1)}{k!},$$

for nonnegative integral k and any α . Usually, α is a real or complex number, but the definition makes sense if α belongs to any field of characteristic zero. The following is well-known:

Theorem 1. The binomial coefficients $\binom{n}{k}$ are positive integers, for integers n, k with $0 \le k \le n$.

The usual proof uses the Law of Pascal's Triangle, and induction.

The binomial coefficients $\binom{r}{k}$, with rational r, occur in the Maclaurin series expansion of $(1+x)^r$ (convergent for real or complex x with |x|<1). For instance,

$$\sqrt{1+x} = \sum_{k=0}^{\infty} {1 \choose k} x^k.$$

Calculating a few terms, one finds that the series begins

$$1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{64}x^4 \cdots$$

The coefficients are not integral (or nonnegative), but when common factors are cancelled (i.e. they are expressed in reduced form m/n, with $m \in \mathbb{Z}$, $n \in \mathbb{N}$, and $\gcd(m,n)=1$), it is remarkable that only powers of 2 occur in the denominators. This is not an accident: the pattern continues forever. We have the following, slightly less well-known result:

Date: March 11, 2011.

Theorem 2. Let $r \in \mathbb{Q}$ and $0 \le k \in \mathbb{Z}$. Suppose that r = m/n in reduced form. Then the binomial coefficient $\binom{r}{k}$ has reduced form s/t, where t is a product of powers of primes that divide n.

For instance, in the expansion of $(1+x)^{\frac{5}{6}}$, the coefficients all take the form $s/(2^a 3^b)$, for some $s \in \mathbb{Z}$.

The theorem may be proved using elementary number theory, for instance by reducing it to the statement that if $d, k \in \mathbb{N}$ and r is the largest factor of k! prime to d, then r divides the product of the terms of each k-term arithmetic progression of integers having step d.

The purpose of this paper is to give a very short soft proof of Theorem 2, by using a little analysis (cf. Section 2).

2. A p-ADIC PROOF

For prime $p \in \mathbb{N}$, let \mathbb{Z}_p denote the ring of p-adic integers [1], and \mathbb{Q}_p the field of p-adic numbers, the quotient field of \mathbb{Z}_p . The field \mathbb{Q} is a subfield of \mathbb{Q}_p , and \mathbb{Q}_p is the completion of \mathbb{Q} with respect to the p-adic metric. Each integer $m \in \mathbb{Z}$ belongs to \mathbb{Z}_p , and \mathbb{Z}_p is the closure of \mathbb{N} in \mathbb{Q}_p . A rational number r with reduced form m/n belongs to \mathbb{Z}_p if and only if p does not divide p.

Theorem 3. If $p \in \mathbb{N}$ is prime, $a \in \mathbb{Z}_p$ and $0 < k \in \mathbb{Z}$, then $\binom{a}{k} \in \mathbb{Z}_p$. Proof. Fix $k \in \mathbb{Z}$, $k \geq 0$. The function

$$f: x \mapsto \begin{pmatrix} x \\ k \end{pmatrix}$$

is a polynomial with coefficients in \mathbb{Q} , and hence it is continuous, as a function from \mathbb{Q}_p into \mathbb{Q}_p . (This just depends on the fact that \mathbb{Q}_p is a metric field.) Choose a sequence $(a_n) \subset \mathbb{N}$ with $a_n \to a$ in p-adic metric. Then $f(a_n) \in \mathbb{N} \subset \mathbb{Z}_p$, and hence $f(a) = \lim_n f(a_n) \in \mathbb{Z}_p$, since \mathbb{Z}_p is closed.

We remark that a rational number r is an integer if and only if $r \in \mathbb{Z}_p$ for each prime p, and so this theorem may be regarded as a 'local version' of Theorem 1. The proof shows that the local version follows at once from Theorem 1, and a simple bit of topology.

Proof of Theorem 2. Let r = m/n, k, and $\binom{r}{k} = s/t$ be as in the statement. Suppose a prime p divides t. If p does not divide n, then $r \in \mathbb{Z}_p$, so $s/t \in \mathbb{Z}_p$, which is false. Thus each prime that divides t divides t.

ACKNOWLEDGMENT

The author is grateful to John Murray for helpful discussion.

References

[1] J.-P. Serre, A Course of Arithmetic. Springer. New York. 1996.

MATEMATICS DEPARTMENT, NUI, MAYNOOTH, CO. KILDARE, IRELAND