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Abstract. We give a short proof, using topology, of a fact about
the denominators of certain binomial coefficients.

1. Introduction

The binomial coefficients are defined by(
α

k

)
=
α(α− 1) · · · (α− k + 1)

k!
,

for nonnegative integral k and any α. Usually, α is a real or complex
number, but the definition makes sense if α belongs to any field of
characteristic zero. The following is well-known:

Theorem 1. The binomial coefficients
(

n
k

)
are positive integers, for

integers n, k with 0 ≤ k ≤ n. �

The usual proof uses the Law of Pascal’s Triangle, and induction.

The binomial coefficients
(

r
k

)
, with rational r, occur in the Maclaurin

series expansion of (1 + x)r (convergent for real or complex x with
|x| < 1). For instance,

√
1 + x =

∞∑
k=0

(
1
2

k

)
xk.

Calculating a few terms, one finds that the series begins

1 +
1

2
x− 1

8
x2 +

1

16
x3 − 5

64
x4 · · · .

The coefficients are not integral (or nonnegative), but when common
factors are cancelled (i.e. they are expressed in reduced form m/n,
with m ∈ Z, n ∈ N, and gcd(m,n) = 1), it is remarkable that only
powers of 2 occur in the denominators. This is not an accident: the
pattern continues forever. We have the following, slightly less well-
known result:
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Theorem 2. Let r ∈ Q and 0 ≤ k ∈ Z. Suppose that r = m/n in
reduced form. Then the binomial coefficient

(
r
k

)
has reduced form s/t,

where t is a product of powers of primes that divide n.

For instance, in the expansion of (1 + x)
5
6 , the coefficients all take

the form s/(2a3b), for some s ∈ Z.

The theorem may be proved using elementary number theory, for
instance by reducing it to the statement that if d, k ∈ N and r is the
largest factor of k! prime to d, then r divides the product of the terms
of each k-term arithmetic progression of integers having step d.

The purpose of this paper is to give a very short soft proof of Theorem
2, by using a little analysis (cf. Section 2).

2. A p-adic Proof

For prime p ∈ N, let Zp denote the ring of p-adic integers [1], and
Qp the field of p-adic numbers, the quotient field of Zp. The field Q
is a subfield of Qp, and Qp is the completion of Q with respect to the
p-adic metric. Each integer m ∈ Z belongs to Zp, and Zp is the closure
of N in Qp. A rational number r with reduced form m/n belongs to Zp

if and only if p does not divide n.

Theorem 3. If p ∈ N is prime, a ∈ Zp and 0 < k ∈ Z, then
(

a
k

)
∈ Zp.

Proof. Fix k ∈ Z, k ≥ 0. The function

f : x 7→
(
x

k

)
is a polynomial with coefficients in Q, and hence it is continuous, as
a function from Qp into Qp. (This just depends on the fact that Qp

is a metric field.) Choose a sequence (an) ⊂ N with an → a in p-adic
metric. Then f(an) ∈ N ⊂ Zp, and hence f(a) = limn f(an) ∈ Zp,
since Zp is closed. �

We remark that a rational number r is an integer if and only if
r ∈ Zp for each prime p, and so this theorem may be regarded as a
‘local version’ of Theorem 1. The proof shows that the local version
follows at once from Theorem 1, and a simple bit of topology.

Proof of Theorem 2. Let r = m/n, k, and
(

r
k

)
= s/t be as in the state-

ment. Suppose a prime p divides t. If p does not divide n, then r ∈ Zp,
so s/t ∈ Zp, which is false. Thus each prime that divides t divides
n. �
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