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A CONTROLLABILITY CRITERION FOR SWITCHEDLINEAR SYSTEMSJESÚS SAN MARTÍN AND ANTHONY G. O'FARRELL1Abstra
t. We report su�
ient 
onditions on a swit
hing signalthat guarantee that the solution of a swit
hed linear system 
on-verges asymptoti
ally to zero. These 
onditions apply to 
ontinu-ous, dis
rete-time and hybrid swit
hed linear systems, with eitherentirely stable subsystems or a mixture of stable and unstable sub-systems. The 
onditions are general enough to allow engineers todesign swit
hing signals that make swit
hed systems 
ontrollable.1. Introdu
tionIn S
ien
e and Engineering one frequently meets systems that 
onsistof a family of subsystems and a swit
hing signal whi
h determineswhi
h subsystem is a
tivated at ea
h time.When all the subsystems are linear, one has a swit
hed linear system(1) .
x(t) = Aσ(t)x(t)where σ : [0, +∞) → {1, · · · , n} is the swit
hing signal and Ai : R

m →
R

m (i = 1, · · · , n) are matri
es that 
hara
terise the subsystems.The large number of areas in whi
h swit
hed linear systems appearmakes their study a matter of real 
on
ern and great importan
e [3, 8,12℄. Its theoreti
al importan
e [3, 9, 10, 11, 13℄ derives from its pra
ti
alimportan
e: one needs to understand under what 
ir
umstan
es thesystem (1) is stable, or what swit
hing signals make the systems stable.Liberzon and Morse [3℄ formulated three basi
 problems in relationto the stability of swit
hed systems.�Problem A: Find 
onditions that guarantee that the swit
hed systemis asymptoti
ally stable for any swit
hing signal�.�Problem B: Identify those 
lasses of swit
hing signals for whi
h theswit
hed system is asymptoti
ally stable�.�Problem C: Constru
t a swit
hing signal that makes the swit
hedsystem asymptoti
ally stable�.01Supported by the HCAA network. The hospitality of the CRM at Bellaterra,Bar
elona, is also gratefully a
knowledged.1
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2 JESÚS SAN MARTÍN AND ANTHONY G. O'FARRELL1The 
ondition of asymptoti
 stability referred to in Problem A, is de-sirable in pra
ti
al appli
ations. Unfortunately, the theorems that pro-vide solution (or partial solutions) to Problem A involve 
onditions thatare either 
omputationally-infeasible (su
h as the existen
e of generalLyapunov fun
tions, or 
onditions on the joint spe
tral radius of thefamily of matri
es [1, 2℄, or too restri
tive for many appli
ations (su
has the existen
e of Lyapunov fun
tions in parti
ular forms, symmetri
systems, pairwise 
ommutativity of the subsystems, and Lie-algebrai

onditions, [4, 5, 6, 7, 9, 10℄). On the other hand, it is well-known thatthere exist systems that exhibit instability even though all their subsys-tems are asymptoti
ally stable [3, 4℄. As a result, one sees the ne
essityof solving Problem B in pra
ti
e, in order to deal with the appli
ations.More often than not, Problem B is studied under the assumption thatall the individual subsystems are asymptoti
ally stable [3, 6℄. However,for some appli
ations it is 
onvenient to allow subsystems that may bestable or unstable.In this paper, we establish 
onditions on the swit
hing signal of aswit
hed linear systems that are su�
ient to ensure asymptoti
 stabil-ity. We allow both stable and unstable subsystems. Our analysis willapply both to random and to deterministi
 swit
hing signals σ(t).The paper is organised as follows. First we work on 
ontinuousswit
hed linear systems, then on dis
rete systems. Afterwards we 
om-bine these to study hybrid systems. Then we apply our results aboutproblems of type B to the design of swit
hing signals in order to solveproblems of type C. 2. Continuous SystemsConsider a 
ontinuous-time system (1). We shall refer to �swit
hingon and o�� the i-th subsystem or the matrix Ai, in the obvious sense:the i-th subsystem is �on� whenever σ(t) = i, and swit
hing o

urswhen the value of σ(t) 
hanges. It is immaterial for the evolution ofthe system whi
h value is taken by σ(t) at these swit
hing times. Wewill also say that the system is �ruled by� the matrix Ai when the i-thsubsystem is on.We make some basi
 assumptions:Assumption 1: We assume that there are a �nite number of swit
hesin ea
h �nite time intervalThis rules out �dithering�behaviour at arbitrarily-short time-s
ales[3, 4℄ . (However, we will allow instantaneous 
hanges, or sho
ks to thesystem when we 
onsider hybrid systems later).This assumption allows us to de�ne fun
tions ni, as follows:



A CONTROLLABILITY CRITERION FOR SWITCHED LINEAR SYSTEMS 3De�nition 1. ni(t), for t ≥ 0, denotes the number of disjoint (
om-pleted or under way) time periods up to and in
luding time t duringwhi
h the matrix Ai is swit
hed on.Assumption 2: We also assume that the system swit
hes on ea
hsubsystem in�nitely often.This is the same as saying that ea
h ni(t) tends to +∞ as t ↑ ∞.This 
ondition makes sense from a pra
ti
al point of view, and isnot a real restri
tion in pra
ti
e. If some subsystem is not used after agiven time, then it 
an be dropped from the analysis without a�e
tingthe out
ome, as regards asymptoti
 stability.For ea
h i, the matrix Ai will be swit
hed on repeatedly. We neednotation for the lengths of time it is used.De�nition 2. Let tij denote the duration of the j-th time period duringwhi
h the system is ruled by matrix Ai.Thus tij (j = 1, 2, 3, . . .) is an in�nite sequen
e of positive real num-bers.De�nition 3. We denote by mi(t) the total duration of the periods upto time t for whi
h the i-th subsystem is swit
hed on.Thus, if time t is the end of the j-th period during whi
h Ai isswit
hed on, mi(t) will equal the sum ti1 + · · ·+ tij . Thereafter, mi(t)will remain 
onstant until the beginning of the next period when Ai isswit
hed on, and will then start in
reasing with derivative 1.We denote by ‖x‖ the norm of x ∈ R
m, with respe
t to some �xednorm on R

m, and by ‖A‖ the indu
ed norm of an m by m matrix A:
‖A‖ = sup{‖Ax‖ : ‖x‖ ≤ 1}.For instan
e, if we use the usual Eu
lidean norm on R

m, then ‖A‖ is√
λ, where λ is the largest eigenvalue of A∗A.The norm ‖ · ‖ determines n one-parameter fun
tions t 7→ ‖etAi‖,whi
h we refer to as the norms of the �ows 
orresponding to the nsubsystems. The swit
hing fun
tion σ determines, for ea
h time t,the time-weighted geometri
 mean of the norms of the �ows in the i-thsubsystem up to the last swit
h at or before that time, whi
h we denoteby

〈eAi〉 = 〈eAi〉(t) :=





ni
∏

ij=1

∥

∥eAitij
∥

∥





1

mi



4 JESÚS SAN MARTÍN AND ANTHONY G. O'FARRELL1We let the asymptoti
 limit of these means be
ci = lim sup

t→∞

〈eAi〉.Remark 1. One 
ould in
lude a fa
tor in the de�nition of 〈eAi〉 toa

ount for the 
hange sin
e the last swit
h, or use the value of miat the last swit
hing-time. These variant de�nitions produ
e quantitieswhi
h will not di�er materially from one another under the 
onditionsof the theorem stated below. The present version is easiest to use, inpra
ti
e.We observe that ea
h ci < +∞. In fa
t, ci is bounded by a 
onstant(depending only on the norm used) times the spe
tral radius of thematrix eAi (the maximum of the absolute values of its eigenvalues).For a similar reason, ea
h ci will be bounded away from zero.It is of 
ru
ial importan
e for our stability analysis whether someof the ci are less than 1. If Ai is a Hurwitz matrix, i.e. has all itseigenvalues in the left half-plane, then ‖ exp(tAi)‖ < 1 when t is largeenough, so one may arrange that ci < 1 by insisting that all the tij staygreater than a suitable lower bound. However, it may well happen that
ci > 1 for a Hurwitz Ai, depending on the norm used and the tij .Let di = max{ci, 1}. We will use di instead of ci when we do not wishto rely on the stability of subsystem i to stabilize the entire system.Now let

µi = lim inf
t↑∞

mi(t)

t
, νi = lim sup

t↑∞

mi(t)

t
,for i = 1, . . . , n. These quantities are asymptoti
 bounds for the pro-portion of the time that the i-th system is swit
hed on.Assumption 3. We assume that for some integer k with 1 ≤ k ≤ n,we have ci < 1 for i ≤ k, and(2) cµ1

1 · · · cµk

k · dνk+1

k+1 · · · dνn

n < 1.(Here, we employ the usual 
onvention, a

ording to whi
h the emptyprodu
t equals 1; thus if k = n, the produ
t d
νk+1

k+1 · · ·dνn
n = 1.)We 
all the systems A1,. . .,Ak the stabilizing systems. The otherswe refer to as bad (even though they may be either unstable systemsor systems with ci < 1 that we don't use to stabilize the whole).Assumption 3 says, inter alia:

• There is at least one stabilizing system.
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• If there is any unstable system, then some stable system isswit
hed on for at least a �xed proportion of any su�
iently-long time period.
• Over long time periods, the stabilizing systems do enough (ina rather 
rude sense) to dampen out the e�e
ts of the unstablesystems.For instan
e, the assumption will hold if 1 ≤ k < p ≤ n, ci < 1 when

i < p, and
c1 · · · ck (cp · · · cn)s < 1,and for ea
h j ≥ p and ea
h i ≤ k

lim inf
t↑∞

mi(t)

mj(t)
>

1

s
.In other words, for ea
h unstable system Aj and ea
h stabilizing system

Ai, the system Aj is used for less than s times as long as Ai over alllong time periods. A simple example of this is when
c1 · (cp · · · cn)s < 1,and the system A1 has µ1 > 1/s, i.e. is used for more than a proportion

1/s of the time, in the large. This may be used, rather brutally, tostabilize a given system by adding a very stable matrix and insistingthat it be used often enough.More generally, given a system with ci < 1 for i ≤ k and
c = cµ1

1 · · · cµk

k · dνk+1

k+1 · · · dνn

n > 1,one may stabilize it by adding a single stable system A0, 
hoosing t0 > 0su
h that
‖et0A0‖ = λ < 1,and swit
hing on A0 for t0 time-units (se
onds, mi
rose
onds, or what-ever is appropriate to the appli
ation) in every period of Nt0 time-units,so that c0 = λ; if the rest of the system is run as before in the remaining

(N −1)t0 time-units of ea
h period, then the new swit
hed system willbe stable if
c

1

N

0 · c < 1.Obviously, there will be a trade-o� between the severity of the damping(greater if c0 is less) and the proportion of time that must be devotedto damping.The following theorem gives us su�
ient 
onditions to 
ontrol a 
on-tinuous system.



6 JESÚS SAN MARTÍN AND ANTHONY G. O'FARRELL1Theorem 1. Consider a swit
hed linear system of the form (1) thatsatis�es Assumptions 1, 2 and 3. Then ea
h solution x(t) of (1) tendsasymptoti
ally to zero.Proof. After a time t, for ea
h i, the transfer matrix Ai will have beenused for ni(t) 
omplete time periods. One of the matri
es will be 
ur-rently in use for the (ni + 1)-st time. Taking norms we obtain(3) ‖x(t)‖ ≤
n1
∏

j=1

∥

∥eA1t1j
∥

∥ · · ·
nn
∏

j=1

∥

∥eAntnj
∥

∥ · ‖x0‖ .Let
c := cµ1

1 · · · cµk

k · cνk+1

k+1 · · · cνn

n .By Assumption 3, we may 
hoose κ with c < κ < 1.Choose ε1 > 0 su
h that for ea
h i ≤ k we have ε1 < 1 − ci, and
(c1 + ε1)

µ1−ε1 · · · (ck + ε1)
µk−ε1 · (ck+1 + ε1)

νk+1+ε1 · · · (cn + ε1)
νn+ε1 < κ.Fix ε > 0. Fix x0 ∈ R.Choose M > 0 su
h that κM‖x0‖ < ε.Choose T > 0 su
h that t > T implies that for ea
h i ∈ 1, . . . , n, wehave

〈eAi〉 ≤ ci + ε1and for 1 ≤ i ≤ k, we have
mi(t)

t
> µi − ε1and for k < i ≤ n,

mi(t)

t
< νi + ε1.Then for t > T , we have

‖x(t)‖ ≤
∏

i

〈eAi〉mi‖x0‖.In view of the fa
t that ci + ε1 is less than 1 when i ≤ k and is greaterthan 1 when i > k, we 
an bound the produ
t from above by
{

k
∏

i=1

(ci + ε1)
µi−ε1 ·

n
∏

i=k+1

(ci + ε1)
νi+ε1

}t

< κt.Thus if t > max{M, T}, we have ‖x(t)‖ < ǫ. Hen
e x(t) → 0 as t ↑ ∞,as required. �



A CONTROLLABILITY CRITERION FOR SWITCHED LINEAR SYSTEMS 73. Dis
rete-time systemsWhen time is dis
rete instead of 
ontinuous we have a swit
hed lineardis
rete-time system, in whi
h the system (1) is repla
ed by(4) x(n + 1) = Aσ(n)x(n)where σ(n) is now a swit
hing signal de�ned for positive integral times,and Ai are m × m matri
es, as before.Dis
rete-time systems are as useful in engineering as 
ontinuous-timesystems, and theoreti
al resear
h is also very a
tive. Furthermore, theyappear in other areas where 
ontinuous system are not found, for ex-ample as a result of using the transfer matrix method to solve dif-ferential equations [14℄. Lately, they are be
oming more importantin the study of stru
tures 
onsisting of sti�ened plates (naval ar
hi-te
ture, bridge engineering, air
raft design) [15℄ and spatially periodi
stru
tures (satellite antennae, satellite solar panels) [16℄. The theorem,stated below, will indi
ate to designer how to insert panels (given by
Ai in (4)) so that os
illations fade o� and do not damage the stru
ture.The notation and assumptions of the last se
tion 
an be adapted fordis
rete systems, as follows.There is no need for Assumption 1.De�nition 4. For an integral time t, ni(t) denotes the number of j ≤ tfor whi
h σ(j) = i.Assumption 2': We assume that the system uses ea
h subsystemin�nitely often, i.e that ea
h ni(t) ↑ ∞.Now let

µi = lim inf
t↑∞

ni(t)

t
, νi = lim sup

t↑∞

ni(t)

t
,for i = 1, . . . , n. These quantities are asymptoti
 bounds for the pro-portion of the time that the i-th system is used.Assumption 3'. We assume that for some k with 1 ≤ k ≤ n, we have

‖Ai‖ < 1 for i ≤ k, ‖Ai‖ ≥ 1 for i > k, and(5) ‖A1‖µ1 · · · ‖Ak‖µk · ‖Ak+1‖νk+1 · · · ‖An‖νn < 1.Theorem 1 
an be reformulated for dis
rete-time systems in the fol-lowing way:Theorem 2. Consider a swit
hed linear dis
rete-time system of theform (4). Suppose that Assumptions 2' and 3' hold. Then the systemis asymptoti
ally stable.



8 JESÚS SAN MARTÍN AND ANTHONY G. O'FARRELL1The proof is almost exa
tly the same as before.If we 
onsider the problem mentioned at the beginning of the se
-tion, and imagine a �solar panel� with many se
tions su�ering unstableos
illations then the theorem will indi
ate the ne
essity of inserting apanel to extinguish the vibrations.Giving that the solar panel is a periodi
al stru
ture, su
h that theswit
hing to its di�erent 
omponents would be ruled by a travellingwave it follows that the swit
hing signal σ(t) would be given by adeterministi
 expression; hen
e, the engineer will have to 
hoose thematerials in the solar panel so that the assumptions of Theorem 2 holdand the travelling wave in it will extinguish.A similar argument would allow one to dedu
e whether a wave wouldextinguish in a system governed by S
hrödinger or Maxwell equations[17℄Remark 2. It is straightforward for engineers to 
he
k whether As-sumption 3' holds. For instan
e, using the Eu
lidean norm, one just
al
ulates the norms
‖A‖2 =

√

λmax(A∗A)as indi
ated earlier. 4. Hybrid SystemsWhen the system has both 
ontinuous and dis
rete subsystems wehave a hybrid system.A linear hybrid system 
an be des
ribed as follows. Starting at anintegral time n in state x(n), the system evolves as a 
ontinuous systemgoverned by the equation(6) .
x(t) = Aσ1(t)x(t)(where σ1 : [0,∞) → {1, · · · , n} is a 
ontinuous-time swit
hing signal)for one unit of time. At the end of that time unit, it rea
hes the state

x(n + 1−). Then it 
hanges instantaneously a

ording to(7) x(n + 1) = Aσ2(n)x(n + 1−)(where σ2 : N → {1, · · · , m} is a dis
rete time swit
hing signal).These systems are more and more frequent in industry due to in-tegration of 
ontinuous and dis
rete systems. The 
ontinuous systemmight have its origin in the �ow or pro
ess of a fa
tory, and the dis
reteone in the digital 
ontrol of the diverse steps of the pro
ess. Hybridsystems give rise to the same problems formulated by Liberzon andMorse, that we have already mentioned formerly [13, 18, 19, 20℄. We
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an dedu
e a theorem for these systems by 
ombining theorems 1 and2.Theorem 3. Consider a hybrid system given by (6) and (7). Supposethat the 
ontinuous subsystem (6) satis�es the 
onditions of Theorem1 and the dis
rete subsystem (7) satis�es the 
onditions of Theorem 2.Then the hybrid system is asymptoti
ally stable.Proof. The proof is straight-forward. It is enough to estimate the normsof the state x(t) after a time t as before, and then to gather separatelythe terms 
orresponding to the 
ontinuous subsystem and to the dis-
rete one. Then the estimates in the proofs of theorem 1 and 2 arerespe
tively repeated for ea
h group of terms. �Remark 3. If one of the subsystems has a bounded solution and the an-other one tends asymptoti
ally to zero (be
ause it satis�es its respe
tivetheorem) then the solution of hybrid system also tends asymptoti
allyto zero. We will return to this remark later.5. Further Remarks5.1. Controllability. The 
on
ept of 
ontrollability plays an impor-tant role in linear systems. A system is 
ontrollable if the state 
anbe 
ontrolled by a swit
hing signal [10, 21, 22℄. The solution of thisproblem is 
riti
al for designers of swit
hed linear systems, be
ause itis usually essential that the system would always be under 
ontrol.The question: �Does there exist a swit
hing sequen
e by whi
h the
ontrollability is realised 
ompletely� was �rst raised in [21℄. A 
ompletegeometri
 
hara
terisation for 
ontrollability of swit
hed linear systemswas established in [22℄, where su�
ient and ne
essary 
onditions wereestablished. In [23℄ a 
onstru
tion method for swit
hing signal is pro-vided. Later, it was tried to design swit
hing signals in su
h a way that
ontrollability was a
hieved with the number of swit
hing as small aspossible; Ji, Wang and Guo [24℄ established the relation between thenumber of swit
hes and the dimension of the 
ontrollable spa
e. Theseauthors 
onsider that although 
ontrollability 
onditions have been es-tablished, the behaviour of swit
hing signal to get the 
ontrollability isnot 
ompletely investigated. Within this frame are the theorems thatwe have shown is this paper; where information about swit
hing signalsthat give 
ontrollability has been shown. Furthermore, 
omplete 
on-trollability follows from the theorems, due to the fa
t that the initialinput does not play any role in the proof of our theorems.We have used an averaging idea in the formulation and proof ofthe theorems. This is similar to probabilisti
 analysis found in work



10 JESÚS SAN MARTÍN AND ANTHONY G. O'FARRELL1that uses the 
on
ept of the average dwell-time [25℄, but in 
ontrast tothe average dwell-time approa
h we have worked with swit
hed linearsystem that have unstable matri
es. This is relevant information forengineers be
ause they usually �nd systems of this type (swit
hed linearsystems ruled only by stable matri
es are very limiting in pra
ti
alproblems).5.2. Feedba
k Stabilisation Problem. If the swit
hing signal ofswit
hed linear systems is not �xed, but depends on a parameter or
an be designed by the engineers then the theorems proven in thispaper allow one to design appropriate feedba
k 
ontrol laws to makesystem stable. Let us show how to do that.There exists a polynomial pi(t) whose degree is at most m, su
h that
∥

∥eAit
∥

∥ ≤ pi(t)e
µitwhere µi = max {Reλi : λi eigenvalues of Ai}. If we bound |pi(t)| ≤

ki in [0, Ti] it follows that
〈

eAi
〉

≡





ni
∏

ij=1

∥

∥eAitij
∥

∥





1
mi

≤ kie
µitiwhere

ti =

∑mi

ij=1 tij

miis the average time that system (1) stays in subsystem given by Ai.Therefore(8) n
∏

i=1

〈

eAi
〉

≤ ke
Pn

i=1 µitiThus, the time ti 
an be dedu
ed su
h that theorem (1) is satis�edand asymptoti
 stability is obtained. It is plain to see that σ(t) will notbe unique, be
ause only the average time ti is 
onstrained, so engineers
an 
hoose any σ(t) provided it is su
h that the average time ti satis�esthe assumptions of Theorem 1.It does not matter whether the swit
hed linear system has unstablematri
es. The engineer must design the system in su
h a way it spendsenough time (a

ording to (8)) using stabilizing matri
es, in order to
ontrol the unstable matri
es.For a dis
rete time system, theorem 2 shows that to get 
ontrolla-bility one must use stabilizing matri
es more than bad ones.For a hybrid system we 
an 
ontrol simultaneously the 
ontinuousand dis
rete subsystems a

ording to what we have just said about



A CONTROLLABILITY CRITERION FOR SWITCHED LINEAR SYSTEMS 11these systems. Or we 
an 
ontrol the 
ontinuous (dis
rete) subsystemif the dis
rete (
ontinuous) has bounded solutions, due to Remark 3.Therefore, in a 
ontinuous system, su
h as those engineers may �ndin a fa
tory, they would be able to add a dis
rete system of the typedes
ribed by Theorem 2 to get pro
ess 
ontrollability.6. Con
lusionsIf a swit
hed linear system has a swit
hing signal su
h that a suitableweighted geometri
 average of stable subsystems dominates that of theunstable ones, then the solution of the system 
onverges asymptoti
allyto zero. The 
onditions are stated for 
ontinuous, dis
rete-time orhybrid systems, and allow engineers design a swit
hing signal to getthe 
ontrollability of the designed system.The asymptoti
 average proportion of time in ea
h subsystems deter-mines the feedba
k needed enabling the engineer to 
ontrol the system.We would like to point out two fa
ts, under the 
onditions of thetheorems above:i) The 
ontrollability of the system is obtained although it hasunstable subsystems. That is important be
ause systems withunstable subsystems are very frequent in engineering.ii) If an engineer is looking for the 
ontrollability of a 
ontinuoussystem whi
h is really hard to 
ontrol then he 
an add a dis
rete-time system. In this new system, the 
ontrollability 
an beprovided by the dis
rete-time subsystem. That is an advantagein 
urrent times, where digital systems over
ome analogue ones,but where 
ontinuous systems are very widespread (think, forexample, of an oil re�nery).Referen
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