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A CONTROLLABILITY CRITERION FOR SWITCHED
LINEAR SYSTEMS

JESUS SAN MARTIN AND ANTHONY G. O’FARRELL!

ABSTRACT. We report sufficient conditions on a switching signal
that guarantee that the solution of a switched linear system con-
verges asymptotically to zero. These conditions apply to continu-
ous, discrete-time and hybrid switched linear systems, with either
entirely stable subsystems or a mixture of stable and unstable sub-
systems. The conditions are general enough to allow engineers to
design switching signals that make switched systems controllable.

1. INTRODUCTION

In Science and Engineering one frequently meets systems that consist
of a family of subsystems and a switching signal which determines
which subsystem is activated at each time.

When all the subsystems are linear, one has a switched linear system

(1) (t) = Agwz(t)
where o : [0, +00) — {1,---,n} is the switching signal and A, : R™ —
R™ (i =1,---,n) are matrices that characterise the subsystems.

The large number of areas in which switched linear systems appear
makes their study a matter of real concern and great importance |3, 8,
12]. Its theoretical importance 3,9, 10} 1T 13| derives from its practical
importance: one needs to understand under what circumstances the
system () is stable, or what switching signals make the systems stable.

Liberzon and Morse [3] formulated three basic problems in relation
to the stability of switched systems.

“Problem A: Find conditions that guarantee that the switched system
1s asymptotically stable for any switching signal”.

“Problem B: Identify those classes of switching signals for which the
switched system s asymptotically stable”.

“Problem C: Construct a switching signal that makes the switched
system asymptotically stable”.
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The condition of asymptotic stability referred to in Problem A, is de-
sirable in practical applications. Unfortunately, the theorems that pro-
vide solution (or partial solutions) to Problem A involve conditions that
are either computationally-infeasible (such as the existence of general
Lyapunov functions, or conditions on the joint spectral radius of the
family of matrices [1, 2], or too restrictive for many applications (such
as the existence of Lyapunov functions in particular forms, symmetric
systems, pairwise commutativity of the subsystems, and Lie-algebraic
conditions, [4, 5] (67, 9, 10]). On the other hand, it is well-known that
there exist systems that exhibit instability even though all their subsys-
tems are asymptotically stable [3,4]. As a result, one sees the necessity
of solving Problem B in practice, in order to deal with the applications.
More often than not, Problem B is studied under the assumption that
all the individual subsystems are asymptotically stable [3] [6]. However,
for some applications it is convenient to allow subsystems that may be
stable or unstable.

In this paper, we establish conditions on the switching signal of a
switched linear systems that are sufficient to ensure asymptotic stabil-
ity. We allow both stable and unstable subsystems. Our analysis will
apply both to random and to deterministic switching signals o(t).

The paper is organised as follows. First we work on continuous
switched linear systems, then on discrete systems. Afterwards we com-
bine these to study hybrid systems. Then we apply our results about
problems of type B to the design of switching signals in order to solve
problems of type C.

2. CONTINUOUS SYSTEMS

Consider a continuous-time system (1). We shall refer to “switching
on and off” the i-th subsystem or the matrix A;, in the obvious sense:
the i-th subsystem is “on” whenever o(t) = 4, and switching occurs
when the value of o(t) changes. It is immaterial for the evolution of
the system which value is taken by o(¢) at these switching times. We
will also say that the system is “ruled by” the matrix A; when the i-th
subsystem is on.

We make some basic assumptions:

Assumption 1: We assume that there are a finite number of switches
in each finite time interval

This rules out “dithering”behaviour at arbitrarily-short time-scales
[3,4] . (However, we will allow instantaneous changes, or shocks to the
system when we consider hybrid systems later).

This assumption allows us to define functions n;, as follows:



A CONTROLLABILITY CRITERION FOR SWITCHED LINEAR SYSTEMS 3

Definition 1. n;(t), for t > 0, denotes the number of disjoint (com-
pleted or under way) time periods up to and including time t during
which the matriz A; is switched on.

Assumption 2: We also assume that the system switches on each
subsystem infinitely often.

This is the same as saying that each n;(t) tends to +oo as t T oo.

This condition makes sense from a practical point of view, and is
not a real restriction in practice. If some subsystem is not used after a
given time, then it can be dropped from the analysis without affecting
the outcome, as regards asymptotic stability.

For each i, the matrix A; will be switched on repeatedly. We need
notation for the lengths of time it is used.

Definition 2. Let t;; denote the duration of the j-th time period during
which the system is ruled by matriz A;.

Thus t;; (7 =1,2,3,...) is an infinite sequence of positive real num-
bers.

Definition 3. We denote by m;(t) the total duration of the periods up
to time t for which the i-th subsystem is switched on.

Thus, if time ¢ is the end of the j-th period during which A; is
switched on, m;(t) will equal the sum ¢;; 4 - - - 4+ t;;. Thereafter, m;(t)
will remain constant until the beginning of the next period when A4; is
switched on, and will then start increasing with derivative 1.

We denote by ||z|| the norm of z € R™, with respect to some fixed
norm on R™, and by ||A|| the induced norm of an m by m matrix A:

[A]l = sup{[|Az[| - [l=]| <1}

For instance, if we use the usual Euclidean norm on R™, then [|A|| is
VA, where ) is the largest eigenvalue of A*A.

The norm || - || determines n one-parameter functions ¢ — ||e
which we refer to as the norms of the flows corresponding to the n
subsystems. The switching function ¢ determines, for each time ¢,
the time-weighted geometric mean of the norms of the flows in the i-th
subsystem up to the last switch at or before that time, which we denote

by

tAiH7

1

m;

<€Ai> = <€Ai>(t) = 1_1 HeAitij

ij=1
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We let the asymptotic limit of these means be

¢; = lim sup (e?).
t—o0

Remark 1. One could include a factor in the definition of (e?) to
account for the change since the last switch, or use the value of m;
at the last switching-time. These vartant definitions produce quantities
which will not differ materially from one another under the conditions
of the theorem stated below. The present version is easiest to use, in
practice.

We observe that each ¢; < +o00. In fact, ¢; is bounded by a constant
(depending only on the norm used) times the spectral radius of the
matrix e’ (the maximum of the absolute values of its eigenvalues).
For a similar reason, each ¢; will be bounded away from zero.

It is of crucial importance for our stability analysis whether some
of the ¢; are less than 1. If A; is a Hurwitz matrix, i.e. has all its
eigenvalues in the left half-plane, then ||exp(tA4;)|| < 1 when ¢ is large
enough, so one may arrange that ¢; < 1 by insisting that all the ¢;; stay
greater than a suitable lower bound. However, it may well happen that
¢; > 1 for a Hurwitz A;, depending on the norm used and the ¢;;.

Let d; = max{¢;, 1}. We will use d; instead of ¢; when we do not wish
to rely on the stability of subsystem i to stabilize the entire system.

Now let
p; = lim inf ( ), v; = lim sup J,
tToo t tToo
for ¢ = 1,...,n. These quantities are asymptotic bounds for the pro-

portion of the time that the i-th system is switched on.

Assumption 3. We assume that for some integer k with 1 < k < n,
we have ¢; < 1 for ¢ < k, and

2) A L <1,

(Here, we employ the usual convention, according to which the empty
product equals 1; thus if k£ = n, the product ;"' ---d» = 1.)

We call the systems Aj,...,A; the stabilizing systems. The others
we refer to as bad (even though they may be either unstable systems
or systems with ¢; < 1 that we don’t use to stabilize the whole).

Assumption 3 says, inter alia:

e There is at least one stabilizing system.
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e If there is any unstable system, then some stable system is
switched on for at least a fixed proportion of any sufficiently-
long time period.

e Over long time periods, the stabilizing systems do enough (in
a rather crude sense) to dampen out the effects of the unstable
systems.

For instance, the assumption will hold if 1 < k < p < n, ¢; <1 when
1 < p, and
Cl...ck (Cp...cn)s < 1’
and for each j > p and each ¢ < k

lim inf mit) > }
ttoo m;(t) =~ s

In other words, for each unstable system A; and each stabilizing system
A;, the system A; is used for less than s times as long as A; over all
long time periods. A simple example of this is when

e (e ren)’ < 1,

and the system A; has iy > 1/s, i.e. is used for more than a proportion
1/s of the time, in the large. This may be used, rather brutally, to
stabilize a given system by adding a very stable matrix and insisting
that it be used often enough.

More generally, given a system with ¢; < 1 for « < k£ and

c=dr ~d2’fﬁf-~-d2” > 1,
one may stabilize it by adding a single stable system Ay, choosing tq > 0
such that

el = X < 1,

and switching on Ay for o time-units (seconds, microseconds, or what-
ever is appropriate to the application) in every period of Nt time-units,
so that ¢g = A; if the rest of the system is run as before in the remaining
(N — 1)to time-units of each period, then the new switched system will
be stable if

1
o e< 1.
Obviously, there will be a trade-off between the severity of the damping
(greater if cq is less) and the proportion of time that must be devoted
to damping.
The following theorem gives us sufficient conditions to control a con-
tinuous system.
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Theorem 1. Consider a switched linear system of the form (1) that
satisfies Assumptions 1, 2 and 3. Then each solution x(t) of (1) tends
asymptotically to zero.

Proof. After a time t, for each 4, the transfer matrix A; will have been
used for n;(t) complete time periods. One of the matrices will be cur-
rently in use for the (n; + 1)-st time. Taking norms we obtain

ni in
(3) ||x(t)|| < H H6A1t1j H .. H HeAntnj H . ||J}0|| ]
j=1 j=1

Let

Vi+1 Un

p1 Lk
.-.Ck .Ck_l’_l.'.cn'

By Assumption 3, we may choose k with ¢ < xk < 1.
Choose £; > 0 such that for each ¢+ < k we have ¢; < 1 — ¢;, and

(Cl + 61)’“_61 - (Ck + El)uk—al . (Ck+1 + 51)Vk+1+61 . (Cn + 51)Vn+51 < K.

Fix ¢ > 0. Fix 2y € R.

Choose M > 0 such that k||| < e.

Choose T' > 0 such that ¢t > T  implies that for each i € 1,...,n, we
have

<€Ai> S c; + €1
and for 1 <1 < k, we have

mit
()>m—€1
t
and for k < i <n,
()<Vi+€1.

Then for t > T, we have

lz@)] < H<€Ai>”“

LIZ‘()H

In view of the fact that ¢; + ¢ is less than 1 when ¢+ < k and is greater
than 1 when ¢ > k, we can bound the product from above by

k n t
{H(CZ +€1)M_El . H (C,’ +€1)Vi+51} < I{t.

i=1 i=k+1

Thus if ¢t > max{M, T}, we have ||z(t)|| < e. Hence x(t) — 0 as t T oo,
as required. O
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3. DISCRETE-TIME SYSTEMS

When time is discrete instead of continuous we have a switched linear
discrete-time system, in which the system () is replaced by

(4) z(n+1) = Asmyz(n)

where o(n) is now a switching signal defined for positive integral times,
and A; are m X m matrices, as before.

Discrete-time systems are as useful in engineering as continuous-time
systems, and theoretical research is also very active. Furthermore, they
appear in other areas where continuous system are not found, for ex-
ample as a result of using the transfer matrix method to solve dif-
ferential equations [14]. Lately, they are becoming more important
in the study of structures consisting of stiffened plates (naval archi-
tecture, bridge engineering, aircraft design) [15] and spatially periodic
structures (satellite antennae, satellite solar panels) [16]. The theorem,
stated below, will indicate to designer how to insert panels (given by
A; in () so that oscillations fade off and do not damage the structure.

The notation and assumptions of the last section can be adapted for
discrete systems, as follows.

There is no need for Assumption 1.

Definition 4. For an integral time t, n;(t) denotes the number of j <t

for which o(j) = 1.

Assumption 2’: We assume that the system uses each subsystem
infinitely often, i.e that each n;(t) T oc.

Now let
n;(t . n;(t
(i = lim inf (), v; = lim sup (),
tloo ¢ tToo
for ¢ = 1,...,n. These quantities are asymptotic bounds for the pro-

portion of the time that the i-th system is used.

Assumption 3’. We assume that for some k& with 1 < k < n, we have
|A;]| < 1fori <k, |[A] >1fori >k, and

(5) [ALF - AJARN - [[Agga ][50 - AR < 1

Theorem [I] can be reformulated for discrete-time systems in the fol-
lowing way:

Theorem 2. Consider a switched linear discrete-time system of the
form ({fl). Suppose that Assumptions 2" and 3’ hold. Then the system
18 asymptotically stable.
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The proof is almost exactly the same as before.

If we consider the problem mentioned at the beginning of the sec-
tion, and imagine a “solar panel” with many sections suffering unstable
oscillations then the theorem will indicate the necessity of inserting a
panel to extinguish the vibrations.

Giving that the solar panel is a periodical structure, such that the
switching to its different components would be ruled by a travelling
wave it follows that the switching signal o(¢) would be given by a
deterministic expression; hence, the engineer will have to choose the
materials in the solar panel so that the assumptions of Theorem 2] hold
and the travelling wave in it will extinguish.

A similar argument would allow one to deduce whether a wave would
extinguish in a system governed by Schrodinger or Maxwell equations
[17]

Remark 2. It is straightforward for engineers to check whether As-
sumption 3’ holds. For instance, using the Euclidean norm, one just

calculates the norms
[Ally = v/ Amax(A*A)

as indicated earlier.

4. HYBRID SYSTEMS

When the system has both continuous and discrete subsystems we
have a hybrid system.

A linear hybrid system can be described as follows. Starting at an
integral time n in state x(n), the system evolves as a continuous system
governed by the equation

(6) (1) = Aoz (?)

(where o7 : [0,00) — {1,---,n} is a continuous-time switching signal)
for one unit of time. At the end of that time unit, it reaches the state
x(n + 1—). Then it changes instantaneously according to

(7) ZL’(?’L + 1) = Aoz(n):v(n + 1—)

(where 09 : N — {1,---  m} is a discrete time switching signal).
These systems are more and more frequent in industry due to in-
tegration of continuous and discrete systems. The continuous system
might have its origin in the flow or process of a factory, and the discrete
one in the digital control of the diverse steps of the process. Hybrid
systems give rise to the same problems formulated by Liberzon and
Morse, that we have already mentioned formerly [13| 18, 19 20]. We
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can deduce a theorem for these systems by combining theorems [1] and

Theorem 3. Consider a hybrid system given by (8) and (). Suppose
that the continuous subsystem (@) satisfies the conditions of Theorem
(1l and the discrete subsystem (1) satisfies the conditions of Theorem[2.
Then the hybrid system is asymptotically stable.

Proof. The proof is straight-forward. It is enough to estimate the norms
of the state z(t) after a time ¢ as before, and then to gather separately
the terms corresponding to the continuous subsystem and to the dis-
crete one. Then the estimates in the proofs of theorem [l and 2 are
respectively repeated for each group of terms. [l

Remark 3. If one of the subsystems has a bounded solution and the an-
other one tends asymptotically to zero (because it satisfies its respective
theorem) then the solution of hybrid system also tends asymptotically
to zero. We will return to this remark later.

5. FURTHER REMARKS

5.1. Controllability. The concept of controllability plays an impor-
tant role in linear systems. A system is controllable if the state can
be controlled by a switching signal [10, 21, 22]. The solution of this
problem is critical for designers of switched linear systems, because it
is usually essential that the system would always be under control.

The question: ”Does there exist a switching sequence by which the
controllability is realised completely” was first raised in [21]. A complete
geometric characterisation for controllability of switched linear systems
was established in [22], where sufficient and necessary conditions were
established. In 23] a construction method for switching signal is pro-
vided. Later, it was tried to design switching signals in such a way that
controllability was achieved with the number of switching as small as
possible; Ji, Wang and Guo [24] established the relation between the
number of switches and the dimension of the controllable space. These
authors consider that although controllability conditions have been es-
tablished, the behaviour of switching signal to get the controllability is
not completely investigated. Within this frame are the theorems that
we have shown is this paper; where information about switching signals
that give controllability has been shown. Furthermore, complete con-
trollability follows from the theorems, due to the fact that the initial
input does not play any role in the proof of our theorems.

We have used an averaging idea in the formulation and proof of
the theorems. This is similar to probabilistic analysis found in work
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that uses the concept of the average dwell-time [25], but in contrast to
the average dwell-time approach we have worked with switched linear
system that have unstable matrices. This is relevant information for
engineers because they usually find systems of this type (switched linear
systems ruled only by stable matrices are very limiting in practical
problems).

5.2. Feedback Stabilisation Problem. If the switching signal of
switched linear systems is not fixed, but depends on a parameter or
can be designed by the engineers then the theorems proven in this
paper allow one to design appropriate feedback control laws to make
system stable. Let us show how to do that.

There exists a polynomial p;(t) whose degree is at most m, such that

H et < py(t)ert

where p; = max {Re); : \; eigenvalues of A;}. If we bound |p;(t)] <
k; in [0,T;] it follows that

< kfi euiti

()= T e

ij=1

where .

> iy
my

is the average time that system (I stays in subsystem given by A;.
Therefore

(8) [T (c*) < ke=iams
=1

Thus, the time #; can be deduced such that theorem () is satisfied
and asymptotic stability is obtained. It is plain to see that o(¢) will not
be unique, because only the average time #; is constrained, so engineers
can choose any o(t) provided it is such that the average time ¢; satisfies
the assumptions of Theorem [I1

It does not matter whether the switched linear system has unstable
matrices. The engineer must design the system in such a way it spends
enough time (according to (8))) using stabilizing matrices, in order to
control the unstable matrices.

For a discrete time system, theorem [2] shows that to get controlla-
bility one must use stabilizing matrices more than bad ones.

For a hybrid system we can control simultaneously the continuous
and discrete subsystems according to what we have just said about

t; =
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these systems. Or we can control the continuous (discrete) subsystem
if the discrete (continuous) has bounded solutions, due to Remark [3

Therefore, in a continuous system, such as those engineers may find
in a factory, they would be able to add a discrete system of the type
described by Theorem [2] to get process controllability.

6. CONCLUSIONS

If a switched linear system has a switching signal such that a suitable
weighted geometric average of stable subsystems dominates that of the
unstable ones, then the solution of the system converges asymptotically
to zero. The conditions are stated for continuous, discrete-time or
hybrid systems, and allow engineers design a switching signal to get
the controllability of the designed system.

The asymptotic average proportion of time in each subsystems deter-
mines the feedback needed enabling the engineer to control the system.

We would like to point out two facts, under the conditions of the
theorems above:

i) The controllability of the system is obtained although it has
unstable subsystems. That is important because systems with
unstable subsystems are very frequent in engineering.

ii) If an engineer is looking for the controllability of a continuous
system which is really hard to control then he can add a discrete-
time system. In this new system, the controllability can be
provided by the discrete-time subsystem. That is an advantage
in current times, where digital systems overcome analogue ones,
but where continuous systems are very widespread (think, for
example, of an oil refinery).
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