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REVERSIBILITY IN THE GROUP OF HOMEOMORPHISMS OF THE
CIRCLE

NICK GILL, ANTHONY G. O’FARRELL and IAN SHORT

Abstract

The group of orientation preserving homeomorphisms of the circle is simple, and, because there are non-
trivial involutions in this group, it must be generated by its involutions. We show that, in this group of
homeomorphisms, each element can be expressed as a product of three involutions. We also characterise
those elements of the group that can be expressed as a composite of two involutions, and perform a similar
characterisation in the full group of homeomorphisms of the circle.

1. Introduction

We describe an element g of a group G as reversible in G if it is conjugate in G to its own
inverse. We say that g is strongly reversible in G if there exists an involution τ in G such that
τgτ = g−1. This language has developed from the theory of finite groups, where the terms real
and strongly real replace reversible and strongly reversible. (The word real is used because an
element g of a finite group G is reversible if and only if each irreducible character of G takes
a real value when applied to g.) Notice that g is strongly reversible if and only if it can be
expressed as a composite of two involutions.

Let S denote the unit circle in R2 centred on the origin. Denote by H the group of home-
omorphisms of S. There is a simple subgroup H+ of H consisting of orientation preserving
homeomorphisms. The subgroup H+ has a single distinct coset H− in H which consists of ori-
entation reversing homeomorphisms. Since H+ is simple, and there are non-trivial involutions
in H+, it must be generated by its involutions. In this paper we prove that each element of H+

can be expressed as a product of three involutions. Also, we classify the the strongly reversible
maps in both groups H+ and H.

A classification of the reversible maps in H+ and H can be extracted from a conjugacy
classification in these two groups. We describe the conjugacy classes of H+ and H in §2,
and comment briefly on reversibility. Note that the strongly reversible maps in the group of
homeomorphisms of the real line were determined by Jarczyk and Young; see [4, 6, 7].

For points a and b in S, we write (a, b) to indicate the open anticlockwise interval from a
to b in S. Let [a, b] denote the closure of (a, b). For a proper open interval I in S, we say that
u < v in I if (u, v) ⊂ I. To classify the strongly reversible maps in H+ we need the notion
of the signature of an orientation preserving homeomorphism which has a fixed point. If f is
such a homeomorphism, then each point x in S is either a fixed point of f or else it lies in an
open interval component I in the complement of the fixed point set of f . The signature ∆f of
f is the function from S to {−1, 0, 1} given by the equation

∆f (x) =


1 if x < f(x) in I,

0 if f(x) = x,

−1 if f(x) < x in I.
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The strongly reversible maps in H+ are classified according to the next theorem, proven in §3.

Theorem 1.1. An element f of H+ is strongly reversible if and only if either it is an
involution or else it has a fixed point and there is an orientation preserving homeomorphism h
of rotation number 1

2 such that ∆f = −∆f ◦ h.

Elements in H+ that cannot be expressed as a composite of two involutions (elements that
are not strongly reversible) can nevertheless be expressed as a composite of three involutions.
The next theorem is proven in §4.

Theorem 1.2. Each member of H+ can be expressed as a composite of three orientation
preserving involutions.

A simple corollary of Theorem 1.2 is that H+ is uniformly perfect, meaning that there is
a positive integer N such that each element of H+ can be expressed as a composite of N or
fewer commutators. Since it is easy to express the rotation by π as a commutator, and each
involution in H+ is conjugate to the rotation by π, it follows from Theorem 1.2 that H+ is
uniformly perfect with N = 3. In fact, Eisenbud, Hirsch, and Neumann [1] proved that H+ is
uniformly perfect with N = 1.

We move on to describe the strongly reversible elements in the larger group H. There are
orientation preserving homeomorphisms of S that are strongly reversible in H, but not strongly
reversible in H+; for example, rotations by angles other than 0 or π. Before we state our
theorem on strong reversibility in H, we introduce some notation which is explained in more
detail in §2. For a homeomorphism f , the degree of f , denoted deg(f), is equal to 1 if f
preserves orientation, and −1 if f reverses orientation. Let ρ(f) denote the rotation number
of an orientation preserving homeomorphism f . The rotation number is an element of [0, 1).
If ρ(f) = 0 then f has a fixed point. If ρ(f) is rational then f has a periodic point, in which
case the minimal period of f (the smallest positive integer n such that fn has fixed points) is
denoted by nf . If ρ(f) is irrational then we denote the minimal set of f , that is, the smallest
non-trivial f invariant compact subset of S, by Kf . This set is either a perfect and nowhere
dense subset of S (a Cantor set) or else equal to S. In the former case we define If to be the set
of inaccessible points of Kf , and in the latter case we define If to be S. There is a continuous
surjective map wf : S → S of degree 1 with the properties: (i) wf maps If homeomorphically
onto wf (If ); (ii) wf maps each closed interval component in the complement of If to a point;
and (iii) wff = Rθwf , where Rθ is the anticlockwise rotation by θ = 2πρ(f). The next theorem
is proven in §5.

Theorem 1.3. Let f be an orientation preserving member of H. Either

(i) ρ(f) = 0, in which case f is strongly reversible if and only if there is a homeomorphism
h such that ∆f = −deg(h) ·∆f ◦ h, and either h preserves orientation and has rotation
number 1

2 or else reverses orientation;
(ii) ρ(f) is non-zero and rational, in which case f is strongly reversible if and only if fnf is

strongly reversible by an orientation reversing involution;
(iii) ρ(f) is irrational, in which case f is strongly reversible if and only if wf (If ) has a

reflectional symmetry.

Using Theorem 1.3 we also show that an orientation preserving circle homeomorphism is
strongly reversible by an orientation reversing involution if and only if it is reversible by an
orientation reversing homeomorphism.
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It remains to state a result on strong reversibility of orientation reversing homeomorphisms.
Each orientation reversing homeomorphism has exactly two fixed points. The next theorem is
proven in §6.

Theorem 1.4. An orientation reversing homeomorphism f is strongly reversible if and
only if there is an orientation reversing homeomorphism s that interchanges the pair of fixed
points of f and satisfies sf2s−1 = f−2.

Fine and Schweigert proved in [2, Theorem 25] that each member of H can be expressed as
a composite of three involutions (this follows quickly from Theorems 1.2 and 1.3), and that
there are elements that cannot be expressed as a composite of two involutions.

We now describe the structure of this paper. Section 2 contains unoriginal material; it consists
of a brief review of a conjugacy classification in H+ and H. All subsequent sections contain
new results. Sections 3 and 4 are about H+ and Sections 5 and 6 are about H.

2. Conjugacy classification

Two conjugacy invariants which can be used to determine the conjugacy classes in H are
the rotation number and signature, introduced in §1. We describe here only those properties of
these two quantities that we use. For more information on rotation numbers, see [3]; for more
information on signatures, see [2].

For an orientation preserving homeomorphism f , choose any point x in S, and let θn be the
angle in [0, 2π) measured anticlockwise between fn−1(x) and fn(x). The rotation number of
f , denoted ρ(f), is the unique number in [0, 1) such that the expression

(θ1 + · · ·+ θn)− 2πnρ(f)

is bounded for all n. The quantity ρ(f) is independent of x. The rotation number is invariant
under conjugation in H+, and ρ(fn) = nρ(f) (mod 1), for each integer n.

A straightforward consequence of the definition of ρ(f) is that ρ(f) = 0 if and only if f has a
fixed point. In this case, S can be partitioned into a closed set fix(f), consisting of fixed points
of f , and a countable collection of open intervals on each of which f is free of fixed points. Now
suppose that ρ(f) = p/q, where p and q are coprime positive integers. Then f has periodic
points, that is, there is a positive integer n for which fn has fixed points. The smallest such n,
denoted nf , is the minimal period of f , and is equal to q.

The remaining possibility is that ρ(f) is irrational. In this case we define Kf to be the unique
minimal set in the poset consisting of f invariant compact subsets of S ordered by inclusion.
We describe Kf as the minimal set of f . Either Kf = S or else Kf is a perfect subset of
S with empty interior—a Cantor set. In the latter case there is a sequence of open intervals
(ai, bi), for i = 1, 2, . . . , such that [ai, bi] ∩ [aj , bj ] = ∅ when i 6= j, and Kf is the complement
of

⋃∞
i=1(ai, bi). The set If of inaccessible points of Kf is the complement of

⋃∞
i=1[ai, bi]. If

Kf = S then we define If = S. There is a continuous surjective map wf of S of degree 1 such
that wff = Rθwf , where θ = 2πρ(f). The map wf is chosen such that it is a homeomorphism
when restricted to If , and it maps each interval [ai, bi] to a single point. This map wf is unique
up to post composition by rotations.

Now suppose that f is an orientation preserving homeomorphism that has a fixed point. The
signature of f was defined in §1. The signature ∆f takes the value 0 on fix(f), and elsewhere
it takes either the value −1 or the value 1. Useful properties of the signature are encapsulated
in the next elementary lemma.

Lemma 2.1. If f is a member of H+ with a fixed point, and h is a member of H, then
(i) ∆hfh−1 = deg(h) ·∆f ◦ h−1,
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(ii) ∆f−1 = −∆f .

We are now in a position to state criteria which determine whether two circle homeomor-
phisms are conjugate. The results are stated in such a way that one can deduce from them
when two orientation preserving circle homeomorphisms are conjugate in each of the groups
H+ and H. The result on irrational rotation numbers follows from [5, Theorem 2.3]. The result
on orientation preserving homeomorphisms with fixed points is similar to [2, Theorem 10]. The
other two theorems are well-known; they can both be proven directly. Recall that the degree of
a circle homeomorphism is 1 if the map preserves orientation, and −1 if it reverses orientation.

Theorem 2.2. Two orientation preserving circle homeomorphisms f and g, each of which
has a fixed point, are conjugate by a homeomorphism of degree ε if and only if there is a
homeomorphism h of degree ε such that ∆g = ε∆f ◦ h.

Note in particular that a map g in H+ with fixed points is conjugate in H+ to all of its
positive powers.

Theorem 2.3. Two orientation preserving circle homeomorphisms f and g, both of which
have the same non-zero rational rotation number, are conjugate by a homeomorphism of degree
ε if and only if fnf is conjugate to gng by a homeomorphism of degree ε.

Since f and g have the same non-zero rational rotation number, the integers nf and ng in
Theorem 2.3 (the minimal periods of f and g) are equal.

Recall that an orthogonal map of the circle of degree 1 is a rotation, and an orthogonal map
of the circle of degree −1 is a reflection in a line through the origin.

Theorem 2.4. Two orientation preserving circle homeomorphisms f and g, both of which
have the same irrational rotation number, are conjugate by a homeomorphism of degree ε if
and only if there is an orthogonal map of degree ε that maps wf (If ) to wg(Ig).

It remains to consider conjugacy between orientation reversing maps.

Theorem 2.5. Two orientation reversing circle homeomorphisms f and g are conjugate
in H if and only if f2 and g2 are conjugate in H by a homeomorphism that maps the pair of
fixed points of f to the pair of fixed points of g.

It follows from Theorems 2.3 and 2.5 that all non-trivial involutions in H+ are conjugate,
and all orientation reversing involutions in H are conjugate. (These statements can easily be
seen directly.)

We briefly remark on the reversible elements in H+ and H. Suppose that f and h are
members of H+ such that hfh−1 = f−1. Then

ρ(f−1) = ρ(hfh−1) = ρ(f) (mod 1).

But ρ(f−1) = −ρ(f) (mod 1), hence ρ(f) is equal to either 0 or 1
2 . On the other hand, if h

reverses orientation and still hfh−1 = f−1, then

ρ(hfh−1) = −ρ(f) (mod 1),

so, in this case, the rotation number tells us nothing about reversibility. Notice that if we com-
pare Theorems 2.2, 2.3, and 2.4 with Theorem 1.3, we see that that an orientation preserving
map f is reversible by an orientation reversing map if and only if f is strongly reversible by an
orientation reversing involution. There are, however, orientation preserving homeomorphisms
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that are not strongly reversible in H, but are nevertheless reversible by orientation preserving
maps; one example is given at the end of §5.

3. Proof of Theorem 1.1

The following two theorems deal with strong reversibility in H+ for the two rotation numbers
0 and 1

2 separately.
A result similar to Theorem 3.2, below, has been proven by Jarzcyk [4] and Young [7] for

homeomorphisms of the real line. We use an elementary lemma in the proof of Theorem 3.2.

Lemma 3.1. If f and g are orientation preserving homeomorphisms with fixed points such
that ∆f = ∆g, then there is an orientation preserving homeomorphism k that fixes each of the
fixed points of f and g such that kfk−1 = g.

Proof. We define a homeomorphism k as follows. On each fixed point x of f and g, define
k(x) = x. On each open interval component (a, b) of S \ fix(f), the signature function takes
either the value 1 for both functions f and g, or else it takes the value −1 for both functions.
If we choose an orientation preserving homeomophism s : (a, b) → R, then sfs−1 and sgs−1

are fixed point free homeomorphisms of R, and either both maps are conjugate to x 7→ x + 1,
or both maps are conjugate to x 7→ x − 1. Thus in either case we can choose an orientation
preserving homeomorphism k0 of (a, b) such that k0fk−1

0 (x) = g(x) for x in (a, b). We then
define k(x) = k0(x) for x in (a, b). We have constructed the required function k. Of course, the
existence of a conjugation between f and g follows from Theorem 2.2, but we also need the
property of k that it fixes each element of fix(f).

We remark that the degree 1 case of Theorem 2.2 follows quickly from Lemmas 2.1 and 3.1.

Theorem 3.2. An element f of H+ with a fixed point is strongly reversible in H+ if and
only if there is a homeomorphism h in H+ with rotation number 1

2 such that ∆f = −∆f ◦ h.

Proof. If σfσ = f−1 for an orientation preserving involution σ, then ∆f = −∆f ◦ σ, by
Lemma 2.1. Conversely, suppose that there is a homeomorphism h in H+ with rotation number
1
2 such that ∆f = −∆f ◦h. By Lemma 2.1, ∆h−1fh = ∆f−1 . Using Lemma 3.1 we can construct
a map k in H+ that fixes each fixed point of f , and satisfies k−1h−1fhk = f−1.

Now choose a fixed point q of f . The equation ∆f = −∆f◦h tells us that all iterates of q under
h also lie in the closed set fix(f). Since h2 has fixed points, the sequence h2(q), h4(q), h6(q), . . .
converges; its limit is another point p in fix(f), and h2(p) = p. The points p and h(p) are
distinct elements of fix(f) because h has no fixed points. Define

µ(x) =

{
hk(x) if x ∈ [p, h(p)],
k−1h−1(x) if x ∈ [h(p), p].

One can check that µ is an involution in H+ and µfµ = f−1.

We move on to orientation preserving homeomorphisms with rotation number 1
2 .

Theorem 3.3. An element of H+ with rotation number 1
2 is strongly reversible in H+ if

and only if it is an involution.

Proof. All involutions are strongly reversible by the identity map. Conversely, let f be
a homeomorphism with rotation number 1

2 , and let σ be an involution in H+ such that
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σfσ = f−1. Choose an element x of fix(f2). Then f(x) is also an element of fix(f2), and
by interchanging x and f(x) if necessary, we may assume that σ(x) ∈ (x, f(x)]. Suppose that
σ(x) 6= f(x). Since σ maps (σ(x), x) onto (x, σ(x)), we have that σf(x) ∈ (x, σ(x)). Likewise, f
maps (x, f(x)) onto (f(x), x), therefore fσ(x) ∈ (f(x), x). However, fσ(x) = σf−1(x) = σf(x),
and yet (x, σ(x)) ∩ (f(x), x) = ∅. This is a contradiction, therefore σ(x) = f(x). This means
that σf , which is an orientation preserving involution, fixes x; hence it is the identity map.
Therefore f = σ, as required.

In contrast to Theorem 3.3 there are reversible homeomorphisms with rotation number 1
2

that are not strongly reversible. An example is given at the end of §5.
We have all the ingredients for a proof of Theorem 1.1.

Proof of Theorem 1.1. If f is a strongly reversible member of H+ then it is reversible, so
it must have rotation number equal to either 0 or 1

2 . If it has rotation number 0 then there is
an orientation preserving homeomorphism h with rotation number 1

2 such that ∆f = −∆f ◦h,
by Theorem 3.2. If f has rotation number 1

2 then it is an involution, by Theorem 3.3. The
converse implication follows immediately from Theorem 3.2.

4. Proof of Theorem 1.2

Proof of Theorem 1.2. Choose an element f of H+ that is not an involution. There exists a
point x in S such that x, f(x), and f2(x) are three distinct points. By replacing f with f−1 if
necessary we can assume that x, f(x), and f2(x) occur in that order anticlockwise around S.
Notice that f−1(x) lies in (f(x), x). Select a point y in (x, f(x)) that is sufficiently close to f(x)
that f−1(y) ∈ (f2(x), x). Choose an orientation preserving homeomorphism g from [x, f(x)]
to [f(x), x] such that g(y) = f(y), g(t) < min(f(t), f−1(t)) in (x, y), and f(t) < g(t) < f−1(t)
in (y, f(x)). A graph of such a function is shown in Figure 1. Define an involution σ in H+ by

Figure 1.

the equation

σ(t) =

{
g(t) if t ∈ [x, f(x)],
g−1(t) if t ∈ [f(x), x].

Let us determine the fixed points of σf . For a point t in [x, f(x)] we have that σf(t) = t if
and only if f(t) = g(t). This means that either t = x or t = y. For a point t in (f(x), x) we
have that σf(t) = t if and only if σfg(w) = g(w), where w = g−1(t) is a point in (x, f(x)).
Therefore g(w) = f−1(w). This equation has no solutions in (x, f(x)), hence σf has no fixed
points in (f(x), x). The direction of flow of σf on the complement of {x, y} can also easily be
deduced from the construction of g, and we find that

∆σf (t) =


0 if t = x, y,

1 if t ∈ (x, y),
−1 if t ∈ (y, x).

By Theorem 3.2, σf is expressible as a composite of two involutions in H+. Therefore f is
expressible as a composite of three involutions in H+.
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5. Proof of Theorem 1.3

For the remainder of this document we work in the full group of homeomorphisms of the
circle. In §2 we showed that all reversible maps in H+ have rotation number either 0 or 1

2 .
This is not the case in H because if h is an orientation reversing map, and f an orientation
preserving map, then ρ(hfh−1) = −ρ(f). Since also ρ(f−1) = −ρ(f), the rotation number
tells us nothing about reversibility by orientation reversing homeomorphisms. In fact, since all
rotations are strongly reversible in H by reflections, there are strongly reversible maps in H
with any given rotation number.

We divide our analysis of strongly reversible maps in H between three cases corresponding
to when the rotation number is 0, rational, or irrational. The first case is Theorem 1.3 (i). We
need a preliminary lemma.

Lemma 5.1. If f is a fixed point free homeomorphism of an open proper arc A in S, then
f is conjugate to f−1 on A by an orientation reversing involution of A.

Proof. The situation is topologically equivalent to the situation when f is a fixed point free
homeomorphism of the real line. Such maps f are conjugate to non-trivial translations, and
translations are reversible by the orientation reversing involution x 7→ −x.

Proof of Theorem 1.3 (i). If τfτ = f−1 for an involution τ , then ∆f = −deg(τ) ·∆f ◦ τ , by
Lemma 2.1. For the converse, we are given a homeomorphism h that satisfies ∆f = −deg(h) ·
∆f ◦ h. Either h preserves orientation and satisfies ρ(h) = 1

2 , in which case the result follows
from Theorem 3.2, or else h reverses orientation.

In the latter case, by Lemmas 2.1 and 3.1 there is an orientation preserving homeomorphism
k that fixes the fixed points of f , and satisfies k−1h−1fhk = f−1. Define s = k−1h−1. As s is
an orientation reversing homeomorphism, it has exactly two fixed points p and q. Let a denote
the point in fix(f) that is clockwise from p, and closest to p. Possibly a = p. Define b to be
the point in fix(f) that is anticlockwise from p and closest to p. Let I = (a, b). Possibly I = ∅.
Similarly we define an interval J about q. Since a point z in (p, q) is a fixed point of f if and
only if the point s(z) in (q, p) is a fixed point of f , we see that I and J do not intersect. Now,
f fixes I so we can, by Lemma 5.1, choose an orientation reversing involution τI of I such that
τIfτI(x) = f−1(x) for x in I. Similarly we define τJ . From the equation sfs−1 = f−1 and the
definition of the intervals I and J we deduce that s fixes I and J . Hence we can define

µ(x) =


τI(x) if x ∈ I,

τJ(x) if x ∈ J,

s(x) if x ∈ [p, q] \ (I ∪ J),
s−1(x) if x ∈ [q, p] \ (I ∪ J).

(5.1)

One can check that µ is an orientation reversing involution that satisfies µfµ = f−1.

To prove Theorem 1.3 (ii) we use a lemma that enables us to deal with rational rotation
numbers of the form 1/n, rather than m/n. Recall that nf denotes the minimal period of f .

Lemma 5.2. Let f be an element of H+ with a periodic point. If fd is strongly reversible
for an integer d in {1, 2, . . . , nf − 1} that is coprime to nf , then f is strongly reversible.
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Proof. There exist integers u and t such that dt = 1 + unf . Let q be the positive integer
between 0 and nf , and coprime to nf , such that ρ(f) = q/nf . Observe that

ρ(fdt) = (1 + unf )ρ(f) = ρ(f) + uq = ρ(f) (mod 1).

Recall that a map g in H+ with fixed points is conjugate in H+ to all its powers. Let g = fnf .
Then g is conjugate to gdt. In other words, fnf is conjugate to (fdt)nf . Apply Theorem 2.3 to
the maps f and fdt to see that these two maps are conjugate. The second map fdt is strongly
reversible, because fd is strongly reversible. Conjugacy preserves strong reversibility, therefore
f is also strongly reversible.

We first prove a special case of Theorem 1.3 (ii).

Lemma 5.3. Let f be an orientation preserving homeomorphism of S with rotation number
1
n , for a positive integer n. Suppose that there is an open interval J such that the intervals
J, f(J), . . . , fn−1(J) are pairwise disjoint, and such that fix(fn) is the complement of J∪f(J)∪
· · · ∪ fn−1(J). Then f is strongly reversible by an orientation reversing involution that maps
fk(J) to f−k+1(J) for each integer k.

Proof. Let R denote an anticlockwise rotation by 2π/n. After conjugating f suitably, the
function f and interval J may be adjusted so that fk(J) = Rk(J) for all integers k. Note that
fn has the same signature on each of the intervals Rk(J) because, by Lemma 2.1 (i),

∆fn(f(x)) = ∆f−1fnf (x) = ∆fn(x).

Let τ denote reflection in a line ` through the origin that bisects J . Thus τ fixes J as a set. Let
σ denote reflection in a line through the origin that is π/n anticlockwise from `. Then R = στ .
Orient J in an anticlockwise sense, and choose an increasing homeomorphism φ of J , without
fixed points, such that τφτ = φ−1 on J . This is possible because we can, by conjugation,
consider J to be the real line and consider τ still to be a reflection, in which case φ can be
chosen to be a translation. Now define an orientation preserving circle homeomorphism g to
satisfy g(x) = f(x), for x in fix(fn), and g(x) = Rk+1φR−k(x), for x in Rk(J). This means that
gn has the same signature on all of the intervals Rk(J) (our choice of φ determines whether
this signature is −1 or 1). By Theorem 2.3, g is conjugate to f . Also, one can check that
σgσ = g−1 and σ(gk(J)) = g−k+1(J) for each integer k. Since strong reversibility is preserved
under conjugation, the result follows.

Proof of Theorem 1.3 (ii). Suppose first that f is strongly reversible by an involution τ .
Then fnf is also strongly reversible by τ . We must show that fnf is strongly reversible by
an orientation reversing involution; thus we may assume that τ is orientation preserving. In
this case, by Theorem 1.1, f is an involution. Therefore fnf is the identity, and as such it is
reversible by any orientation reversing involution.

Conversely, suppose that there is an orientation reversing involution τ such that τfnf τ =
f−nf . Let p be a fixed point of fnf . There is an integer d that is coprime to nf such that
the distinct points p, fd(p), . . . , f (nf−1)d(p) occur in that order anticlockwise around S. The
function (fd)nf is strongly reversible because it equals (fnf )d. If we can deduce that fd is
strongly reversible then it follows from Lemma 5.2 that f is strongly reversible. In other words,
it is sufficient to prove the theorem when the points p, f(p), . . . , fnf−1(p) occur in that order
around S.

The map τf has a fixed point q which, by replacing τ with fkτf−k for an appropriate integer
k, we can assume lies in the interval (f−1(p), p]. Either q is a fixed point of fnf (that is, a
periodic point of f) or it is not. In the former case let I = [q, f(q)] and define, for integers


