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ABSTRACT. Let U be an open subset on an open Riemann surface with clos U
compact. We give necessary and sufficient conditions for U such that the algebra
A(U) is complex pervasive on bdy U. Complex pervasive means that the uniform
closure on each proper closed subset E of bdy U is the space of all complex-valued
continuous functions on E.

1. INTRODUCTION

Let X be a compact Hausdorff topological space and denote by C'(X) the Ba-
nach algebra of all complex-valued continuous functions with the uniform norm. A
function space S on X is a closed subspace of C'(X). By clos¢(g) S, we denote the
uniform closure on E of the function space S, where E is a closed subset of X.

Given a closed set Y C X, the function space S on X is said to be complex
pervasive on Y if closqry S = C(F) whenever E is a proper non-empty closed
subset of Y.

Let U be an open subset of an open Riemann surface R, and denote by bdy U its
topological boundary. In this paper we shall consider the case where X = clos U,
Y = bdy U and S coincides with the algebra A(U) of complex valued functions
continuous on clos U and analytic on U.

The concept of pervasive spaces was introduced by Hoffman and Singer in 1960
[11] in relation with the study of maximal uniform algebras.

The real pervasiveness (analogously defined) of spaces of harmonic functions on
Euclidean spaces was studied by Netuka in [13], where it is shown that if the open
set U C R? is bounded, connected and satisfies bdy U = bdy clos U, then the space
of functions continuous on clos U and harmonic on U is real pervasive on bdy U.

The study of the complex and real pervasiveness of the algebras A(U) where U
is an open subset of the Riemann sphere C has been treated by Netuka et al. in
[14]. In this paper a complete characterization in topological terms of the complex
pervasiveness of the algebra A(U) on bdy U is given, as well as a complete charac-
terization of the real pervasiveness of Re A(U) (space of real parts of elements of
A(U)). In the latter case, a topological characterization is not possible but one can
be given involving continuous analytic capacity. This result draws on the character-
ization given by Gamelin and Garnett [8] of those U such that A(U) is a Dirichlet
algebra on bdy U [7].

The present note was prompted by the question, whether the results concerning
complex pervasiveness in [14] could be extended to open Riemann surfaces. Using
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a Cauchy transform on the surface (see below) in the manner of Scheinberg [16]
and Gauthier [9], many of the results concerning uniform holomorphic (respectively
meromorphic) approximation can be carried from the plane to open Riemann sur-
faces. We show that this result on pervasiveness is no exception.

2. PRELIMINARY RESULTS

The dual space C'(X)* of C(X), where X is a compact Hausdorff topological
space will be identified with the space of complex regular Borel measures on X and
denoted by M(X). The (closed) support of a measure p € M(X) will be denoted
by spt .

For a subset S C C(X) and a measure p € M(X) we write p L S and say u
annihilates S, if [ f dp =0 whenever f € S. The set of annihilating measures of S
will be denoted by S*.

As an easy consequence of the Hahn-Banach Theorem, and as remarked in [6], a
subspace S C C'(X) is complex pervasive on Y, where Y is a closed subset of X if
and only if each € S+, i # 0 has spt u = Y. Equivalently, S is complex pervasive
on Y if and only if the conditions p € M(Y), p L S and spt p G Y imply that
w=0.

Let R be a connected open Riemann surface. Gunning and Narashiman have
shown that R can be visualized in a very concise way [10]. More precisely,

Theorem. Any (connected) open Riemann surface R admits a holomorphic immer-
ston into the complex plane; that is, there is a holomorphic mapping p: R — C
which is a local homeomorphism.

Therefore p is a global uniformizing parameter on R. A parametric disc D(z,r)
of center z € R and radius » > 0 is an open set on R biholomorphic under p to the
disc of center p(z) and radius r on the complex plane.

Note that dp is a globally nowhere zero holomorphic 1-form, so this global uni-
formizing parameter gives rise to an area element dA = dp A dp.

Given a compact set K C R, R(K) denote the algebra of functions in C'(K') which
are uniform limits on K of meromorphic functions with poles off K, and O(K) the
set of functions holomorphic in a neighbourhood of K. By the Runge-Behnke-Stein
Theorem R(K) = closcx) O(K).

Using Gunning and Narashiman’s result and the fact that R is Stein (so the first
Cousin problem is solvable), Scheinberg [16] and Gauthier [9] constructed a globally
defined meromorphic function ¢(z,w), for z,w € R, such that ¢(-,w) has a simple
pole at z = w and locally ¢(z,w) — (p(z) — p(w))~™" is a holomorphic function near
z = w. For this reason ¢(-,w) is called a Cauchy kernel on R. An application of
Stokes Theorem gives the following Cauchy-Pompeiu Theorem [16].

Proposition 2.1. Let U be an open set in R with clos U compact, having a piece-
wise C1 oriented boundary and let f € C*(clos U). Then for every w € U,

f) =5 [ f@atew) o)+ 5 [ Fiaeiw) aace),
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In particular, if f € Cl(clos U)NO(U), f satisfies the Cauchy formula

flw) = = / Gt ) dp(o)

2T

Definition 2.2. Let 4 be a complex measure with compact support on R. The
q-Cauchy transform of p is defined by

jlw) =+ [ aevw) du(o)
TR
Remark 2.3. The definition of the ¢g-Cauchy transform depends on the meromorphic
function ¢ which is in general not unique. For the purpose of this paper we abreviate
the ¢g-Cauchy transform of p to the Cauchy-transform of u.

In local coordinates, fi is the convolution of a locally integrable function and a
measure with compact support, so fi converges absolutely except for w in a set of
A-measure zero.

Note also that as the Cauchy kernel ¢ is analytic except at z = w, ji is analytic
outside spt p. The analyticity of ji follows by differentiation under the integral sign.

The following results are standard (cf. [7, p. 46], [5], [15]) but we include them
for the convenience of the reader.

The importance of the Cauchy transform in approximation theory comes from the
following lemma.

Lemma 2.4. Let pu be a complex measure on a compact subset K of R. The Cauchy
transform [i vanishes off K if and only if n 1 R(K).

Proof. 1f i 1. R(K) then clearly, as ¢(z, w) is analytic except at z = w, i1 = 0 off K.
Conversely, let f € O(K). Then by Proposition 2.1

) = 5 [ Fatzw) doto)

where I' is an appropriate contour around K.

Therefore
[ 1w aut) = [ (5 [ 1t ans)) dutw)
— o [5G ([ atew) ante)) ante
5 [ 1) dot2) =0,
so 1 L R(K) by density. 0

Lemma 2.5. Let p be a complex measure with compact support. If i = 0 A-a.e.
then 11 =0 (the converse trivially holds).

Proof. Let g € CL(R) (space of differentiable complex-valued functions with com-
pact support). Then as in Lemma 2.4

1 dg

gw)=o— | ==

= 57 | g (alzw) dACz),



4 A.G. O'FARRELL AND A. SANABRIA-GARCIA

SO

1 ., . 0g
[ otwy dutw) = =3 [ )32 dace),
Since 1 = 0 A-a.e., we deduce that
/ g dp = 0.
R

By the Stone-Weierstrass Theorem, CL(R) is dense in C(spt ) so we can conclude
that p = 0. U

Remark 2.6. An easy consequence of Lemma 2.5 is the Hartog-Rosenthal Theorem
for Riemann surfaces [5]. Note that as the Cauchy kernel has a simple pole of degree
1 at z = w, for fixed w,

a%q(z, w) dp = 6,5,

where d,, denotes the Dirac mass concentrated at w. From this equality follows that
% ji(2) dp = n(2)d
—ji(z = u(2)dp ,
o5/1(?) dp = u(2)dp
where these equalities are interpreted as identities between currents of bidimension
(0,1).

In general the Cauchy transform of a measure p is not continuous. However in
the particular case of a measure of the form y = @A where ¢ € LE(R) is an
essentially bounded function with compact support we have the following result as
a consequence of the local integrability of the Cauchy kernel.

Lemma 2.7. Let o € LE(R). Then @A is continuous.

Proof. Let D := D(z,r) be a parametric disc of center z € R and radius r > 0. In
D, q(z,w) = (p(2) — p(w))™" + G(2, w) where §(z,w) is analytic, so
(

&4<w)=/R (2)(zw)
_ & z a(z. w z z)q(z, w z
- [ dA<)+/Dq<, ) AAC)+ [ ootz ) dA)

where w € D. Hence

7 w) dA(z)

O
/ (¢ p ) dxdy + continuous function,
p(D

and consequently the continuity of 51\4 follows from the standard argument in the
complex plane. O

3. MAIN RESULT

In this section we will prove that given an open subset U of R with essential
boundary and clos U compact, then the algebra A(U) is complex pervasive on
bdy U. Before proving this theorem we introduce some definitions and results.
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Definition 3.1. Let U be an open subset of R and let a € bdy U. We say that a
is an A(U)—inessential boundary point if there exist r > 0 such that each function
f € A(U) extends analytically to D(a,r).

The A(U)-essential boundary of U is the set of points in bdy U which are not
A(U)-inessential. We abbreviate A(U)-essential to essential.

Remark 3.2. 1t is easy to show that if U has at least one inessential boundary point
then A(U) is not complex pervasive on bdy U. For suppose a is an inessential
boundary point. Then, since

A(U U {iness. bdy. points}) # C(bdy U U {iness. bdy. points})

we can find a non-trivial annihilating measure supported on bdy U \ {a}.
Note also that if bdy U is essential then by Riemann’s Removable Singularities
Theorem, U cannot have isolated boundary points.

The next result is a classical theorem of R. Arens [1].

Theorem 3.3. Let U be an open subset of R, with clos U compact. Then the
mazimal ideal space M gy = clos U.

The following theorem is folklore, and goes back to E. Bishop and L. Kodama,
who studied uniform algebras of analytic functions on Riemann surfaces in the 1960’s
[2, 4, 12]. We include a proof for the reader’s convenience. It is a pleasure to
acknowledge helpful correspondence about this from T.W. Gamelin.

Theorem 3.4. Let U be an open subset of R, with clos U compact. Then the Shilov
boundary of A(U) is the essential boundary of U.

Proof. By Theorem 3.3, the Shilov boundary of A(U) can be viewed as a closed
subset of clos U. Note that as a consequence of the maximum modulus principle for
analytic functions, the essential boundary of U is contained in the Shilov boundary
of A(U). To prove the converse we argue by contradiction.

Suppose a is an essential boundary point of U which is not in the Shilov boundary
of A(U). Pick a representing measure 6 for a on A(U) supported on the Shilov
boundary of A(U), and let p = (p(z) — p(a)) 6, where p is a global uniformizing
parameter on R.

By adding a constant if necessary, we can suppose that at the point w = a the
Cauchy kernel ¢(z,a) = (p(z) — p(a)) ™!, so that ji(a) = 1.

Let V' the connected component of @ in R \ spt . Then, as /i is analytic off spt u
and fi(a) = 1, i has only a discrete set of zeros in V. Therefore the measure v,
defined by

3.1 d 11 b) d
(3.1) ve(z) = 7rﬂ(b)tz(z, ) dp(z)

is a complex representing measure for b € V- Nclos U on A(U) [5], except perhaps
for a discrete set of points, so for each f € A(U)

F(b) = / 1) dn(a)
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Therefore each f € A(U) is holomorphic on V' (by differentiation under the integral
sign), except for a discrete set of singularities. Since f is bounded, f must be
holomorphic on V.

Thus, V' \ U consists only of inessential boundary points of U, which is a contra-
diction. O

Remark 3.5. By Theorem 3.3, M 4y is metrizable, so there exist a minimal bound-
ary for A(U) [3], which coincides with the set of its peak points. The minimal
boundary is dense in the Shilov boundary of A(U). Therefore, as a consequence of
Theorem 3.4, the set of peak points for A(U) is dense in the essential boundary of
U.

Theorem 3.6. Let U be an open subset of R, with clos U compact. Suppose
that bdy U is essential. Then A(U) is complex pervasive on bdy U if and only
if bdy U; = bdy U for each component U; of U.

Proof. Suppose first that U has a component U; with bdy U; # bdy U. We can
choose a nonzero annihilating measure p for A(U;) supported on bdy U;. Then
i L A(U) and spt p is a proper subset of bdy U, so A(U) is not complex pervasive
on bdy U.

For the converse, assume that bdy U; = bdy U for each component U; of U.
Let u be a complex measure supported on bdy U, p L A(U) and suppose that
spt u # bdy U.

By hypothesis, 4 L A(U) so u L R(clos U) and therefore Lemma 2.4 implies that
=0 off clos U.

Suppose now a € bdy U \ spt p. Choose r > 0 sufficiently small and a parametric
disc D(a,r) such that clos D(a,r) Nspt p= 0. Let {p,}>>, C D(a,7)Nbdy U be
a sequence of distinct peak points for A(U) such that p, — a as n T oo. Then
there exist a sequence f, € A(U) such that f,(p,) = 1 and |f,(2)] < 1 for all
z € (clos U) \ {pn}. Hence f* — 0 uniformly on spt p as k 1 oo.

Now /i(p,) = 0 because otherwise (note that i is analytic near clos D(a,r)) the

measure v, defined by the equation (3.1) is a complex representing measure for p,
on A(U) and

1:ff(pn):/ f,fdl/pn—ﬂ] as kT oo
bdy U

which is a contradiction.

Consequently, a is an accumulation point of zeros of i and by analyticity, as
i =0 off spt p (cf. Remark 2.3), we can conclude that /i = 0 on clos D(a,r). By
hypothesis bdy U; = bdy U for each component U; of U, so by connectivity ji = 0
on U;, and hence i = 0 on U. Therefore i =0 on R \ spt u.

Finally, let £ C bdy U be compact. Consider the measure A = x|z A. By Lemma

2.7, A is continuous and therefore A € A(U) so

0:/ Xdu:—/ﬂdA:/ﬂdA,
bdy U R E

and therefore ji = 0 A-a.e. on bdy U.
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Hence 1 = 0 A-a.e. on R, so by Lemma 2.5 p = 0 which proves the complex
pervasiveness of A(U) in bdy U. O
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