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Pointwise Bounded Approximation by Polynomials

Anthony G. O’Farrell and Fernando Perez–Gonzalez

1. Introduction.

For a bounded open set U ⊂ C, we denote by H∞(U) the collection of all bounded

analytic functions on U . We let X denote bdyU , the boundary of U , Y denote the

polynomial hull of U (the complement of the unbounded component of C ∼ X), and

U∗ denote intY , the interior of Y . We denote the sup norm of a function f : A → C

by ‖f‖A:

‖f‖A = sup{|f(z)| : z ∈ A}.

We denote the space of all analytic polynomials by C[z], and we denote the open unit

disc by D and the unit circle by S1.

This paper is about the possibility of approximating a function f ∈ H∞(U), using

only polynomials which satisfy the same control as |f | on a prescribed subset S ⊂ U .

This kind of approximation was first considered by O.J. Farrell, and has been studied

by Rubel and Stray (cf. [4]).

Definition. Let U ⊂ C be a bounded open set, and F ⊂ clos(U) be closed. We say that

(U,F ) is a Farrell pair if for each f ∈ H∞(U), and each ε > 0, there exist pm(z) ∈ C[z],

such that

pm(z) → f(z), ∀z ∈ U ,

‖pm‖U ≤ ‖f‖U , and

‖pm‖F ≤ ‖f‖F∩U + ε.

We shall characterise the Farrell pairs.

In view of the Farrell–Rubel–Shields Theorem [2, p.151], C[z] is pointwise bound-

edly dense in H∞(U) if and only if each f ∈ H∞(U) extends to H∞(U∗), and this in

2



turn happens if and only if there are components U1, U2, U3, . . . of U∗ and closed sets

E1, E2, E3, . . . such that

U =
⋃
n

(Un ∼ En)

and the sets En ∩ Un have inner analytic capacity zero.

Thus, if we are studying situations in which C[z] is pointwise boundedly dense

in H∞(U), then there is no loss in generality in assuming that U is a union of some

components of U∗ (i.e. that the En are empty).

We call a set U an FRS set if it is open and bounded and is a union of components

of its U∗. Note that the components of an FRS set are simply–connected.

Since we lose nothing essential, we shall work exclusively with FRS sets U .

When U is an FRS set, with components U1, U2, U3, . . ., we fix a point an ∈ Un

and let λn denote harmonic measure for an on bdyUn. We set λ =
∑∞

1 λn/2n, and

call λ a harmonic measure for U . We note that λn is singular to λm whenever n 6= m (

— the simplest way to see this is to note, first, that Um and Un can share at most one

common accessible boundary point, second, by Fatou’s Theorem, the harmonic measure

for Un is supported on the set of accessible boundary points, and third, harmonic

measure contains no point masses). There is a canonical isometric injection f 7→ f̃ of

H∞(U) → L∞(λ). There are a number of equivalent ways of describing f̃ . One way

is to map the n–th component Un conformally to D, transfer f |Un to a function in

H∞(D), take nontangential limits a.e. dθ, and transfer them back. This defines f̃ a.e.

dλn. Since the various λn are mutually–singular, this suffices to define f̃ . A second way

is to use Brownian motion. For our present purposes, the most relevant is this. We may

choose a sequence pm of polynomials converging pointwise boundedly on U to f , and

converging λ–a.e. See [2, (VI.5.2)]. The limit is f̃ .

For each n, we fix a conformal map φn : Un → D. Even though φn need not extend

continuously to Xn = bdy(Un), it does extend as a Borel bijection of a set of full λn

measure on Xn onto a set of full dθ measure on S1. The extension is non–unique, but
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it is determined up to sets of measure zero at each end. We denote by Hn the image in

S1 of F under such a bijection.

Theorem 1. Let U be an FRS set with components Un (n = 1, 2, 3, . . .) and harmonic

measure λ. Let F be a closed subset of clos(U). Then the following are equivalent:

(1) (U,F ) is a Farrell pair;

(2) (Un, F ∩ clos(Un)) is Farrell, for each n.

(3) For each f ∈ H∞(U),

|f̃ | ≤ ‖f‖F∩U , λ– a.e. on F ;

(4) For each n, dθ–almost–every point of Hn is a nontangential limit point of φn(F∩Un);

(5) For each closed set A ⊂ F ∩ bdy(U), there is a sequence of measures µn, (n =

1, 2, 3, . . .) with compact support lying in F ∩ U , and having ‖µn‖ ≤ λ(A) such that

µn → λ|A, weak-star in H∞(U)∗.

In case U is the unit disk, this theorem is due to Stray [4]

Note that the equivalence of (1) and (2) does not say that “there is no interaction

between distinct components in this problem”. It takes this neat form because of the

formulation in terms of closed sets F .

We observe that (5) is equivalent to the same statement, with “closed set” replaced

by “Borel set”.

We note that it is not true that (U,F ) is Farrell if and only if (U∗, F ) is Farrell.

The latter condition implies the former, but not conversely. The classical cornucopia

(Figure 1) provides an example.

figure 1 here : The cornucopia.

An example with smoothly–bounded components is provided by the budding disc

(Figure 2).
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figure 2 here: The budding disc.

Letting U denote the union of the buds,

U =
∞⋃

p=2

2p⋃
j=0

{z ∈ C : |z − ap,j | < 2−2p

},

where

ap,j =
(
1 + 2−2p

)
exp(2πj/2p),

we find that U∗ is obtained from U by adding the open unit disc. Taking

S = {ap,j : p ≥ 2, 0 ≤ j ≤ 2p},

and F = clos(S), we see that (U,F ) is once again Farrell, while (U∗, F ) is not.

2. Proof of Theorem 1.

We begin with a lemma about FRS sets.

Lemma 1. If V is a union of components of an FRS set, then V is itself an FRS set.

Proof. Let U be an FRS set, with components U1, U2, U3, . . ., and let

V =
⋃
n∈J

Un

be a union of components of U . We must prove that for each n ∈ J , the set Un is a

component of V ∗.

Fix n ∈ J , and let W be the component of V ∗ that contains Un.

If W 6= Un, then there exists a point

a ∈W ∩ bdy(Un) ⊂ V ∗ ∩ bdyUn.

But then a ∈ bdy(U∗), since bdy(Un) ⊂ bdy(U∗) and U is FRS. Since C ∼ clos(U∗) is

a subset of C ∼ V , this implies that a ∈ clos(C ∼ V ∗), contradicting the openness of

V ∗.
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Thus W = Un.

Now we begin the proof of Theorem 1.

We use the notation S = F ∩ U , Xn = bdyUn, Fn = F ∩ clos(Un), Sn = F ∩ Un.

(1) ⇒ (2): Suppose (U,F ) is a Farrell pair. Fix n. Let f ∈ H∞(Un) and ε > 0 be

given. We have to show that we may approximate f pointwise on Un by polynomials

pm having

‖pm‖Un ≤ ‖f‖Un , and

‖pm‖Fn
≤ ‖f‖Sn

+ ε.

Extend f to an element of H∞(U) by defining f = 0 on the remaining components

Um (m 6= n) of U . Then ‖f‖U = ‖f‖Un and ‖f‖F = ‖f‖Fn , so the existence of the

required pm’s follows from the fact that (U,F ) is Farrell.

(2) ⇒ (3): This implication may be proved component by component. Further,

since, by Lemma 1, the components of an FRS set are themselves FRS sets, we may

suppose that U is connected for this part of the proof.

So let U be a connected FRS set and F ⊂ clos(U) be such that (U,F ) is Farrell.

We must show that the extension f̃ in L∞(λ) has |f̃ | ≤ ‖f‖S , λ–a.e.. This is implicitly

proved in Stray’s paper, in case U = D, but we cannot simply reduce to that case,

because the conformal map from U to D may fail to extend continuously (FRS examples

exist. See section 3, below.), hence there is no simple correspondence of Farrell pairs

(U,F ) and (D, F ′). Here is a direct argument, based on Stray’s idea.

Fix f ∈ H∞(U) and η > ‖f‖S .

Suppose (for a contradiction) that there exists a compact set A ⊂ F , with λ(A) > 0,

on which |f | > η. By means of obvious modification to f , η and A, we may arrange

that

‖f‖S ≤ η < 1 = ‖f‖U , and
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the real part <f of f exceeds η+1
2 on A.

Let pm ∈ C[z] be any sequence converging pointwise to f on U , with ‖pm‖U ≤ 1.

We claim that necessarily lim inf ‖pm‖F > η.

By Fatou’s Lemma, we may choose z ∈ U such that the harmonic measure ν with

respect to z of A exceeds 3+η
4 and <f(z) > η+1

2 .

Then, for large enough m, we get |pm(z)| > η+1
2 .

But
|pm(z)| ≤

∫
A

|pm(ζ)| dν(ζ) +
∫

X∼A

|pm(ζ)| dν(ζ)

≤ ‖pm‖A +
1− η

4
,

‖pm‖A >
3η + 1

4
,

and this yields the claim.

This contradicts the assumption that (U,F ) is Farrell. Thus (2) implies (3).

(3) ⇒ (1): We resume the consideration of the general FRS set U . Suppose (3)

holds. We must show that (U,F ) is Farrell.

Let f ∈ H∞(U) and ε > 0 be given. Let η = ‖f‖S + ε. We will modify an

argument that goes back to Davie to show that f may be approximated pointwise on

U by polynomials pm that have |pm| ≤ 1 on U and |pm| ≤ η on F .

First, we extend f to U∗ by defining f = 0 on U∗ ∼ U . This makes f an element

of H∞(U∗).

Let λ∗ denote a harmonic measure for U∗ on X. Then λ << λ∗.

Let

N = {g ∈ C(Y ) : ‖g‖F ≤ η, ‖g‖Y ≤ 1}.

Here C(Y ) denotes the uniform algebra of all continuous complex–valued functions on

Y .

By Mergelyan’s Theorem [2], the closure of C[z] in C(Y ) is the algebra A(Y ) of

all those g ∈ C(Y ) that are analytic on U∗. Thus it is enough for us to show that f
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belongs to the closure, in the topology of uniform convergence on compact subsets of U ,

of the set N ∩A(Y ). This is a locally–convex topology, so we may apply the Separation

Theorem. Further, the continuous linear functionals on the space of analytic functions

on U , with the topology of uniform convergence on compact sets, are represented by

measures having compact support in U . Thus all we need show is that∣∣∣∣∫ f dµ

∣∣∣∣ ≤ 1

whenever µ is such a measure and satisfies∣∣∣∣∫ h dµ

∣∣∣∣ ≤ 1

for all h ∈ N ∩A(Y ).

Let µ have these properties. The set N is the unit ball for an equivalent norm

on the space C(Y ). Thus we may apply the Hahn–Banach Theorem and the Riesz

Representation Theorem to obtain a measure ν, supported on Y , such that∣∣∣∣∫ g dν

∣∣∣∣ ≤ 1, ∀g ∈ N∫
h dν =

∫
h dµ, ∀h ∈ N ∩A(Y ).

It follows that

|ν|(Y ∼ F ) + η|ν|(F ) ≤ 1.

We claim that ν|X is absolutely–continuous with respect to λ∗.

In fact, let µ1 be the balayage of µ to X, and let ν1 be the balayage of ν|U . Then

µ1 and ν1 are absolutely–continuous with respect to λ∗, and µ1−ν1− (ν|X) annihilates

A(Y ). By a generalised F. and M. Riesz Theorem [2, Theorem (II.8.6)], µ1−ν1− (ν|X)

is absolutely–continuous with respect to λ∗, hence so is ν|X.

Thus f̃ is defined ν–a.e., and we have that |f̃ | ≤ η ν–a.e. on F , and |f̃ | ≤ 1, ν–a.e.

on Y .
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Choose gm ∈ A(Y ) such that gm → f pointwise λ∗–a.e. on bdy Y and ‖gm‖Y ≤ 1.

This is possible, by the Farrell–Rubel–Shields Theorem and the Reduction of Norm

Theorem [2, (VI.5.3)].

Then ∣∣∣∣∫ f dµ

∣∣∣∣ =
∣∣∣∣∫ f dν

∣∣∣∣
≤

∣∣∣∣∫
Y∼F

f dν

∣∣∣∣ +
∣∣∣∣∫

F

f dν

∣∣∣∣
≤ 1 · |ν|(Y ∼ F ) + η|ν|(F ) ≤ 1,

as required.

Thus (3) implies (1).

Before completing the proof, we give a second lemma.

Lemma 2. Let H ⊂ S1 and S ⊂ D be Borel sets. Then the following are equivalent:

(1) dθ–almost every point of H is a nontangential limit point of S.

(2) For each Borel set T ⊂ H there is a sequence of measures µn, (n = 1, 2, 3, . . .) with

compact support lying in S, and having total mass less than or equal to the dθ–measure

|T | of T , such that µn → dθ|T , weak-star in H∞(D)∗.

(3) |f̃ | ≤ ‖f‖S dθ–a.e. on H, for each f ∈ H∞(D). Here f̃ denotes the non–tangential

limit of f .

In formulating condition (2), we take the point of view that dθ|E acts on H∞(D)

via the usual (Fatou) map f 7→ f̃ , H∞(D) → L∞(dθ).

Note especially that condition (2) does not just say that µn → dθ|E in the usual

weak–star topology on measures (i.e. weak–star in C(clos(D)) ). That would not be

sufficient, and (2) is a much stronger statement.

It is not hard to see that it is equivalent to demand condition (2) only for closed

sets T ⊂ H.

Proof of Lemma.
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(1) ⇒ (2): Assume that almost every point of H is a nontangential limit point of

S, and let T be a closed subset of H.

For α > 0, let us say that z ∈ S1 is an α–non–tangential limit point of S is there is

a sequence zn ∈ S, converging to z, such that

α · |z − zn| ≤ 1− |zn|.

We may assume that there exists α > 0 such that each point of T is an α–non–

tangential limit point of S, because the general T may be written as a disjoint union

T =
∞⋃

m=1

Tm,

where
p⋃

m=1

Tn

takes up all but the 2−p–th part of the measure of T , and all points of Tm are αm–non–

tangential limit points of S for some αm > 0. Given suitable sequences νm,n for Tm,

their term–by–term sum does the trick for T .

For s ∈ S, let Ws denote the arc of S1

Ws = {z ∈ S1 : α · |s− z| ≤ 1− |s|}.

For each n, take r = (n − 1)/n. Then r < 1, and the arcs Ws, corresponding

to s ∈ S with |s| > r, give a fine covering of T , so we may select points sm ∈ S

(m = 1, 2, 3, . . .) with |sm| > r such that the corresponding Wsm are pairwise disjoint

and cover dθ–almost–all of T . Choose an integer M such that

M⋃
m=1

Wsm

has all but a proportion 1 − r of the dθ–measure of T . Define νn to be the atomic

measure having mass |Wsm | at the point sm. Thus νn is a finite sum of point masses,

supported on S.
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It follows easily, using the fact that functions belonging to H∞(D) have nontan-

gential limits a.e. dθ, that νn → dθ|T weak–star on H∞(D).

(2) ⇒ (3): Suppose (2) holds. If some f ∈ H∞(D) had |f̃ | > ‖f‖S , then we

could choose a closed set T ⊂ H, a unimodular constant ω and a positive ε such that

<(ωf) > ‖f‖S + ε on T . Taking νn as in (2), we would then have∣∣∣∣∫ f dνn −
∫

T

f̃ dθ

∣∣∣∣ ≥ ε · |T | > 0

for all n, contradicting the weak–star convergence.

(3) ⇒ (1): This was proved by Stray [4, p.302], in the course of proving his theorem.

We note from the proof that the measures νn may be taken discrete, if that is

desired.

We now continue the proof of Theorem 1.

(4) is equivalent to (3). Since each function in H∞(Un) extends to a function in

H∞(U), condition (3) of the Theorem is equivalent to the condition that for each n and

each g ∈ H∞(D), the non–tangential boundary values g̃ on S1 satisfy

|g̃| ≤ ‖g‖φn(Sn), dθ–a.e. on Hn.

This is because with f = g ◦ φn, we get f̃ = g̃ ◦ φn a.e. λn.

Thus the equivalence of conditions (3) and (4) of the Theorem follows from the

equivalence of conditions (1) and (3) of Lemma 2.

(5) is equivalent to (3). In the same way, the equivalence of conditions (1) and (2)

of Lemma 2 shows that condition (3) of the Theorem is equivalent to the statement

that:

for each n and for each Borel set T ⊂ Hn there is a sequence of measures µm,

(m = 1, 2, 3, . . .) with compact support lying in φn(Sn), and having total mass less than

or equal to the dθ–measure |T | of T , such that µm → dθ|T , weak-star in H∞(D)∗.
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Since all the terms in this statement are conformally–invariant, we obtain the equiv-

alence of condition (5) of the Theorem.

This concludes the proof of the Theorem.

3. Remarks and Further Results.

(3.1) Figure 3 shows an example of an FRS set U for which the conformal map

from U to D is not uniformly continuous.

figure 3 here.

(3.2) Let U be a FRS set and F ⊂ clos(U) be closed.

From the proof of Theorem 1, we see that (U,F ) is Farrell if and only if (U∗, F ∗) is

Farrell, where F ∗ is obtained from F by adding to it a set Sn in each component Un of

U∗ ∼ U for which the harmonic measure w.r.t. Un of F is positive, in such a way that

closSn = Sn ∪ (bdyUn ∩ F ) and

(Un, closSn) is a Farrell set.

(3.3) Let U =
⋃
Un be an FRS set and S ⊂ U . If (U, closS) is Farrell, then there

does not exist n such that

λn (clos(S) ∼ clos(Un ∩ S)) > 0.

For if there were such an n, we could choose a function u, harmonic on Un, with

u = 0 near clos(Un ∩ S) ∩ bdy (Un),

u = 1 on a set of positive λn measure on clos(S), and

0 < u < 1 on Un.

Defining f = exp(u + ιu∗) on Un, and f = 0 on the remaining components of U ,

we would have

‖f‖U = 1, ‖f‖S = ‖f‖S∩Un < 1, but

|f̃ | = 1 on a set of positive λ measure. Thus condition (3) of Theorem 1 would fail,

with F = clos(S), hence (U, closS) is not Farrell.
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(3.4) In practical terms, if it is desired to check that some pair is a Farrell pair,

then (4) and (5) of Theorem 1 are the most readily verified.

It is not, in general, possible to phrase the conditions in terms of nontangential

approach, in the original set U . Nontangential approach (approach from a sector) is

not a conformally–invariant idea, and (as is known) there may be almost no points on

bdy(Un) that are nontangentially approachable.

Condition (5) has the advantage that it does not refer to the conformal maps, about

which little may be known. It has the disadvantage that weak–star convergence with

respect to H∞(U) may be difficult to check. In general, it is fair to say that the sets for

which the conformal maps are ill–behaved are the same as those for which the weak–star

convergence is hard to check, so there is little to choose between the two conditions.

(3.5) The property of being a Farrell pair is not topological, i.e. there exist pairs

(U,F ) and (V,G), mapped one to the other by a global homeomorphism of C, such that

(U,F ) is Farrell and (V,G) is not. To make such an example, modify the budding disc

in such a way that the closure of the set of buds meets the unit circle (the boundary of

the inner disc) only on a subset K that is perfect and has length zero. Take U to be

the union of the central disc and the set of all the buds, and S to be the set of buds.

Let F = S ∪K. Then (U,F ) is a Farrell pair, since K has harmonic measure zero for

all components of U . We may construct a homeomorphism of C onto itself, of the form

Ψ : r exp(ιθ) 7→ r exp(ιψ(θ)),

where ψ is a periodic homeomorphism of R onto itself, with the property that Ψ(K)

has positive length. The result is that (Ψ(U),Ψ(K)) is not Farrell, because condition

(3) of Theorem 1 fails. In fact, one can see that the characteristic function of the set of

buds cannot be suitably approximated by polynomials.

(3.6) If the boundary of U is locally–smooth off an exceptional set which for each

n is the union of a set of Hausdorff dimension less than 1 and a countable union of
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impressions of prime ends of Un, then (by Makarov’s Theorem [3]) each λn is mutually–

absolutely continuous with respect to length (1–dimensional Hausdorff measure) and (by

a well–known result on conformal mapping) nontangentaility transfers faithfully under

the conformal map φn, so we can then rephrase the property of being a Farrell pair

in terms of nontangential limits. This covers all but extremely pathological examples.

However, it must be said that extremely pathological examples are generic in plane

topology. For instance, one can find three simply–connected open sets with the same

boundary.

(3.7) Another consequence of Makarov’s Theorem is that if F is a compact set of

Hausdorff dimension less than 1, then (U,K) is a Farrell pair whenever U is a FRS set

whose closure contains K.

(3.8) The property of being a Farrell pair can be rephrased in terms of the maximal

ideal space M (or character space) of the uniform algebra H∞(U). Here is a brief

summary of the relevent facts. There is a continuous projection π : M → C defined by

π(φ) = φ(z 7→ z). The algebra H∞(U) is isometrically isomorphic to the l∞ orthogonal

direct sum of the uniform algebras H∞(Un). For each n, we may consider the maximal

ideal space Mn of H∞(Un). There is usually more to M than the disjoint union of the

Mn, but the rest of it will not concern us.

The harmonic measure λn (for the fixed point an ∈ Un) on Xn lifts to Mn in many

ways, but in one special way. The Shilov boundary Shn of Mn may be identified with

the Choquet boundary of the space of bounded harmonic harmonic functions on Un;

there is a unique probability measure λ∗n on Shn such that∫
Shn

h(x) dλ∗n(x) = h(an)

whenever h is a bounded harmonic function on Un; evidently π∗λ∗n = λn.

Theorem 2. Under the hypotheses of Theorem 1, the following are equivalent:

(1) The pair (U,F ) is a Farrell pair;
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(2) For each f ∈ H∞(U) and each n, we have

|f(φ)| ≤ ‖f‖F∩U

for λ∗n–almost–all φ ∈ π−1(F );

(3) For each n, λ∗n–almost–all points of π−1(F ) belong to the weak–star closure in

H∞(U)∗ of U ∩ F .

Apart from the considerably enhanced level of abstraction, the proof of this is not

essentially different from that of the theorems about λn’s.
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