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Abstract

The reversible elements of a group are those elements that are conjugate to their own
inverse. A reversible element is said to be reversible by an involution if it is conjugate to
its own inverse by an involution. In this paper, we classify the reversible elements and the
elements reversible by involutions in the group of quaternionic Möbius transformations.

1. Introduction

The reversible elements of a group G are those members g of G for which there exists
h ∈ G with h−1gh = g−1. Equivalently, g ∈ G is reversible if and only if there are elements
h, k ∈ G with g = hk and g−1 = kh. The element g is reversible by an involution if h

can be chosen to be an involution. Equivalently, g is reversible by an involution if and
only if there are involutions h, k ∈ G with g = hk. The property of being reversible, the
property of being reversible by an involution, and the property of being an involution,
are conjugation invariants. Interest in reversibility has grown from the notion of time-
reversibility in dynamical systems, and time-reversible systems are related to Hamiltonian
dynamical systems. See [15] for a survey of the physical background of time-reversible
systems. The reversible maps and maps reversible by involutions have been classified in
many groups, too many to list here, and we reference only [12], [13], and [16], as samples
of the rich literature. The purpose of this paper is to describe the reversible maps and the
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maps reversible by involutions in certain groups defined using quaternions, in particular,
the group of quaternionic Möbius transformations.

Consider Möbius transformations of the extended complex plane, C∞, of the form

z 7→ az + b

cz + d
,

where a, b, c, d ∈ C, and ad−bc 6= 0 (subject to the usual conventions regarding the point
∞). These maps are conformal, and the full collection of them forms a group, denoted
M+

2 . Adjoin to M+
2 all maps of the form

z 7→ az̄ + b

cz̄ + d
,

where a, b, c, d ∈ C, and ad− bc 6= 0, and another group M2 is formed, the 2-dimensional
Möbius group. Let M−

2 = M2 \M+
2 . The maps in M−

2 are anti-conformal. An inversion
in C∞ means either an inversion in a circle, or a Euclidean reflection. The group M2

contains all inversions. Sometimes the term ‘reflection’ is used instead of ‘inversion’:
in this paper the term ‘reflection’ is reserved for Euclidean reflections. The inversions
generate M2, and since they are anti-conformal, the group M+

2 consists of composites of
even numbers of inversions, and M−

2 consists of composites of odd numbers of inversions.
An inversion in RN

∞ (the one-point compactification of RN ) means either an inversion in
an (N−1)-dimensional sphere, or a Euclidean reflection in an (N−1)-dimensional plane.
The N -dimensional Möbius group MN is the group of transformations of RN

∞ generated
by inversions in RN

∞. The subgroup M+
N consists of the conformal members of MN , and

the subset M−
N consists of the anti-conformal members of MN . It is well known that the

field of quaternions, H, can be identified with R4, but it is less well known that M+
4 can

be identified with the group of bijections of H∞ (the one-point compactification of H) of
the form

z 7→ (az + b)(cz + d)−1, (1·1)

where a, b, c, d ∈ H (again, assuming certain conditions regarding the point ∞ that we
later analyse). Moreover, the bijections of the form

z 7→ (az̄ + b)(cz̄ + d)−1, (1·2)

where a, b, c, d ∈ H, make up the rest of M4. The Möbius group, which was defined
geometrically with inversions, can now be studied with the algebra of quaternions. In
this paper, we describe the reversible maps in M4 using the algebra of quaternions, and
the geometry of the Möbius group acts as a guide.

There are many incarnations of the groups MN , hence many ways to calculate the
reversible maps inMN . For example,MN is the group of hyperbolic isometries of (N+1)-
dimensional hyperbolic space, so an entirely geometric treatment of reversible maps can
be given. Alternatively, MN can be realised as a matrix group: the group of positive
Lorentz transformations of RN+2, and the reversible maps can be found with linear
algebra (see [10] for work on involutions in the Lorentz group). Nevertheless, the theory
of quaternionic Möbius transformations, coupled with geometric intuition, has a beautiful
coherence that will seem familiar to those acquainted with the usual M+

2 action on C∞.
This paper is a complete treatment of the reversible maps of quaternionic Möbius trans-

formations. The account could have been significantly shortened by referencing classical
works such as [8], but we choose to provide all details for two reasons. First, and most
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importantly, the paper is more readable for our having provided background material.
The underlying theory is sufficiently shallow that the account benefits from the clarity
of additional information, without being too heavily burdened by the extra weight of
detail. Second, although the geometric theory of 4-dimensional Möbius transformations
is known, there are few concise accounts of the transition from M4, defined as the group
generated by inversions, to the equivalent quaternionic construction. We are careful in
the remainder of this introduction to explain which parts of this document are original,
and which parts are included for completeness and clarity of exposition.

The structure of the paper is as follows. In §2, we give a brief introduction to quater-
nions. In §3, we describe the 4-dimensional orthogonal group in terms of quaternions.
There is a brief digression in §3 to classify the reversible maps in the multiplicative group
H\{0}. The material from the digression, although presented unusually in the context of
reversible maps, is well known. In §4 and §5, we consider involutions and composites of
involutions in the orthogonal group. The representation of the 4-dimensional orthogonal
group in terms of quaternions can be found in [8], and the properties of the involutions
in the orthogonal group are well known ([13] and [14]). Nevertheless, the orthogonal
involutions do not appear to have been studied with quaternions, and the work of §4 and
§5 is necessary for later sections.

In §6, the quaternionic representation of the 4-dimensional Möbius group is reconciled
with the geometric definition as a group generated by inversions. Certain elements are
then distinguished according to conjugacy. Most of this material can be found in [11].
In §7 and §8 we analyse the involutions and composites of involutions in the Möbius
group. The main results are summarised in the next two theorems, which are original.
The proofs can be found in §8.

Theorem 1·1. Each transformation in M4 is reversible by an involution.

This result implies that all members of M4 are reversible. The situation in M+
4 is

not as straightforward. The reversibility properties are summarised in Theorem 1·2. In
that theorem, the term loxodromic is used to describe a Möbius transformation f in M+

4

that is conjugate to a map of the form x 7→ λaxb, where λ > 0, λ 6= 1, and a and b are
unit quaternions. Also in Theorem 1·2, the notion of a real part of a quaternion is used.
This notion is defined formally in §2; it has an analogous meaning to the real part of a
complex number.

Theorem 1·2. Each map f ∈ M+
4 that is not loxodromic is reversible by an involu-

tion. Given a loxodromic map f ∈ M+
4 that is conjugate to x 7→ λaxb, where λ > 0,

λ 6= 1, and |a| = |b| = 1; the following are equivalent:
(i) the map f is reversible;
(ii) the map f is reversible by an involution;
(iii) the absolute values of the real parts of a and b are equal.

If f is not reversible then it nevertheless may be expressed as the composite of three
involutions in M+

4 .

We remark that, in contrast to Theorem 1·2, every element of M+
2 is reversible. This

can easily be proven using the usual representation of maps in M+
2 using complex num-

bers. Also, every element of M+
3 is reversible. On the other hand, in M+

1 (the group of
conformal real Möbius transformations), all loxodromic maps are reversible, and the only
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maps that are not loxodromic, but are reversible, are involutions. A complete analysis of
reversibility in all groups M+

N will appear in [18].
In this paper we combine quaternion algebra with geometry, and in so doing we fol-

low H. S. M. Coxeter ([8]), and P. G. Gormley ([11]—an extension of [8]). Others have
recently studied quaternionic Möbius transformations for various purposes. See, for ex-
ample, [6]. There has also recently been interest in representations of MN in terms of
Clifford algebras, following a sequence of papers written by L. V. Ahlfors in the 1980s
([2], [3], [4], and [5]). Ahlfors references K. Th. Vahlen as his source of inspiration (per-
haps Vahlen was the first to work with quaternionic Möbius transformations). The theory
of this paper can be generalised to N -dimensions using Ahlfors’ techniques, but the ad-
ditional algebraic complexity of the Clifford group would stretch the paper sufficiently
that instead we recommend that one of the other models of hyperbolic space be used to
determine the reversible maps.

2. Quaternions

Let H denote the non-commutative field of quaternions. A general element of H takes
the form s + iu1 + ju2 + ku3, where s, u1, u2, u3 ∈ R, and i, j, and k satisfy the relations

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j.

We identify the quaternions with R4 via the correspondence s + iu1 + ju2 + ku3 7→
(s, u1, u2, u3) ∈ R4.

The real part of x = s + iu1 + ju2 + ku3 is denoted Re[x] and it is equal to s. The
imaginary part of x is iu1 + ju2 + ku3. A quaternion x is real if u1 = u2 = u3 = 0, and x

is purely imaginary if Re[x] = 0. We identify the real quaternions with R and we identify
the quaternions of the form s + it, for s, t ∈ R, with C. It is sometimes convenient
to reduce quaternionic calculations to calculations in C because of the commutativity
in C. We identify purely imaginary quaternions with triples of real numbers via the
correspondence iu1 + ju2 +ku3 7→ (u1, u2, u3). Then vector products of purely imaginary
quaternions can be taken. Write quaternions x and y in terms of their real and imaginary
parts as x = s + u and y = t + v, where s, t ∈ R, and u and v are purely imaginary
quaternions. Let u · v denote the scalar product of u and v and let u × v denotes the
vector product of u and v. Then

xy = (st− u · v) + (sv + tu + u× v). (2·1)

The conjugate of x is the quaternion x̄ = s − iu1 − ju2 − ku3. The conjugate of x is
particularly useful as it is the multiplicative inverse of x, if x is of unit norm. Next are
three useful lemmas; the proofs of the first two follow immediately from (2·1).

Lemma 2·1. Let x, y ∈ H. Then xȳ + yx̄ = 2(x · y).

Lemma 2·2. An element a ∈ H satisfies a2 = −1 if and only if a is a purely imaginary
unit vector.

Lemma 2·3. Suppose that unit quaternions a and b satisfy axb = x for each x ∈ H.
Then either a = b = 1 or a = b = −1.

Proof. Set x = 1. Then ab = 1, so that ax = xa for all x. Set x = i and j in turn to
see that a is real, therefore either a = 1, or a = −1, as required.
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3. The 4-dimensional orthogonal group

As a preliminary step toward describing quaternionic Möbius transformations; we rep-
resent orthogonal maps (which are Möbius transformations) in terms of quaternions. Let
O4 denote the group of orthogonal maps of R4 and let SO4 denote the subgroup of con-
formal maps in O4. It is readily proven with linear algebra (see, for example, [9]) that
elements of SO4 are expressible as the direct sum of two 2-dimensional rotations (about
0) and elements of O4 \SO4 are expressible as the direct sum of a 2-dimensional rotation
(about 0) and a 2-dimensional reflection (in a hyperplane through 0). The material on
orthogonal maps in this section can be found in [8].

Lemma 3·1. The map

τy : R4 → R4, x 7→ −yx̄y,

where |y| = 1, is the reflection in the Euclidean hyperplane Πy perpendicular to y.

Proof. It is immediate that τy is linear and that τy(y) = −y. Using Lemma 2·1, one
can check that τy(x) = x for each x ∈ Πy.

The next theorem is [8, Theorem 8.1].

Theorem 3·2. The group O4 is the set of all maps of one of the forms x 7→ axb or
x 7→ ax̄b, where |a| = |b| = 1. The subgroup SO4 is the set of all maps of the form
x 7→ axb, where |a| = |b| = 1.

Proof. Consider maps α(x) = axb and β(x) = ax̄b, where |a| = |b| = 1. They are
linear, and they are orthogonal since, for example, |α(x)| = |a||x||b| = |x|. The first part
of Theorem 3·2 follows because O4 is generated by linear reflections, which, according to
Lemma 3·1, assume the form τy, where |y| = 1. The second part of Theorem 3·2 holds
because a member of O4 is of the same form as α, rather than β, if and only if it is the
composite of an even number of (anticonformal) reflections of the form τy.

Two maps x 7→ axb and x 7→ cx̄d, for |a| = |b| = |c| = |d| = 1, are never the same
as the former is conformal and the latter is anti-conformal. Suppose maps x 7→ axb and
x 7→ cxd are the same. Then, by Lemma 2·3, either c = a and d = b, or c = −a and
d = −b. Similar comments apply to maps of the form x 7→ ax̄b.

Corollary 3·3. A map α ∈ SO4 fixes the real line pointwise if and only if the map
α is of the form α(x) = āxa, where |a| = 1. All such maps form the group SO3 of special
orthogonal transformations of the set of purely imaginary quaternions (which is identified
with R3).

Proof. If the orthogonal map α(x) = bxa, where |a| = |b| = 1, fixes R pointwise, then
α(1) = 1, therefore b = ā. With this observation, the corollary follows from Theorem 3·2.

A consequence of Corollary 3·3, and a digression from the classification of orthogonal
maps in terms of quaternions, is a conjugacy classification in the multiplicative group of
quaternions. (Proposition 3·4, below, is equivalent to [8, Lemma 2.2].)

Proposition 3·4. Two non-zero elements a, b ∈ H are conjugate in the multiplicative
group H \ {0} if and only if |a| = |b| and Re[a] = Re[b].
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Proof. Suppose u−1au = b, for some u ∈ H \ {0}. Then |b| = |u|−1|a||u| = |a|. Let
v = u/|u|, so that v̄av = b. Therefore v̄āv = b̄. Hence 2Re[b] = b+ b̄ = v̄(a+ ā)v = 2Re[a].
For the converse, if |a| = |b| and Re[a] = Re[b] then there is a map f ∈ SO3 with
f(Im[a]) = Im[b] and, by Corollary 3·3, v̄av = b for some unit quaternion v.

The reversible maps in H \ {0} can be classified using Proposition 3·4.

Corollary 3·5. An element a ∈ H \ {0} is reversible if and only if |a| = 1.

Proof. If v−1av = a−1 for some v 6= 0, then |a| = 1. The converse follows from
Proposition 3·4, because Re[a] = Re[a−1] for a unit quaternion a.

In contrast to Corollary 3·5, check using (2·1) that −1 and 1 are the only involutions
in H \ {0}, therefore these are the only quaternions that are reversible by involutions.

Here is another corollary of Proposition 3·4, which we apply in Theorem 3·7, below.

Corollary 3·6. Select a, b ∈ H of unit norm. Then Re[a] = Re[b] if and only if there
exist u, v ∈ H of unit norm such that a = uv and b = vu.

Proof. The condition involving u and v holds if and only if a and b are conjugate. The
result then follows from Proposition 3·4.

A rotation in O4 is an orthogonal map that can be written as the composite of two
reflections. Such maps may be expressed as the direct sum of a 2-dimensional rotation
about the origin and a 2-dimensional identity map. The final theorem in this section is
[8, Theorem 5.2].

Theorem 3·7. The set of rotations in O4 is the set of maps of the form α(x) = axb,
where |a| = |b| = 1 and Re[a] = Re[b].

Proof. A rotation α is the composite of two reflections, say α = στ , where σ(x) = −ux̄u

and τ(x) = −v̄x̄v̄, for unit quaternions u and v. Therefore α(x) = uvxvu. Set a = uv and
b = vu. Then |a| = |b| = 1 and Re[a] = Re[b], by Corollary 3·6. Conversely, suppose that
f(x) = axb, where |a| = |b| = 1 and Re[a] = Re[b]. From Corollary 3·6, there are unit
quaternions u and v with a = uv and b = vu. Hence α = στ , where σ(x) = −ux̄u and
τ(x) = −v̄x̄v̄ are both reflections in hyperplanes that contain the origin (by Lemma 3·1),
so that α is a rotation.

4. Involutions in the orthogonal group

First, we give a geometric description of the involutions in O4. Then we represent
involutions by quaternion maps, using the results of the previous section. Recall that
α ∈ O4 is the direct sum of two 2-dimensional rotations about 0, if α ∈ SO4, and α is
the direct sum of a 2-dimensional rotation about 0 and a 2-dimensional reflection in a
line through 0, if α /∈ SO4. In both cases, α is an involution if and only if the angle of
each rotation is either 0 or π. Note that the direct sum of a 2-dimensional reflection and
a 2-dimensional identity map is a 4-dimensional reflection, and such maps generate O4.
(The 4-dimensional reflections are the maps described in Lemma 2·1.) Now involutions
in O4 are examined with quaternions.

Proposition 4·1. The involutions in SO4 are the orthogonal maps of the form x 7→ x,
x 7→ −x, and x 7→ axb, where a2 = b2 = −1.
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Proof. The three given types of map are involutions, and they are members of SO4, by
Theorem 3·2. Conversely, a map α ∈ SO4 is of the form α(x) = axb, where |a| = |b| = 1,
so if α is an involution then a2xb2 = x, for all x ∈ H. By Lemma 2·3, either a2 = b2 = 1
or a2 = b2 = −1. In the former case, a = ā, hence a = ±1, therefore either α(x) = x or
α(x) = −x.

Using Lemma 2·2 and Theorem 3·7 we deduce that maps x 7→ axb, where a2 = b2 = −1,
are rotations (by π) with Re[a] = Re[b] = 0.

Proposition 4·2. The anti-conformal involutions in O4 are the maps of the form
x 7→ −ax̄a, |a| = 1 (reflections), or maps of the form x 7→ ax̄a, |a| = 1 (direct sums of
2-dimensional reflections and 2-dimensional rotations by π).

Proof. A map α ∈ O4 \ SO4 has the form α(x) = ax̄b, where |a| = |b| = 1. This map
is an involution if and only if ab̄xāb = x, for all x ∈ H. By Lemma 2·3, this occurs if and
only if either a = −b or a = b.

5. Composites of involutions in the orthogonal group

It is well known that each element of ON can be expressed as the composite of N

reflections, and there are elements of ON that cannot be expressed as the composite
of any fewer reflections (see, for example, [9]). In this section we show that each map
in O4 is the composite of two involutions, in other words, each map is reversible by
an involution. A similar statement is proven in the subgroup SO4. It is easy to verify
these claims geometrically. Each 2-dimensional rotation about 0 is the composite of two
2-dimensional reflections in lines through 0. Using the decomposition of a 4-dimensional
orthogonal map α described at the beginning of the previous two sections, the map α

can be written as the composite of two involutions. Explicitly in case α ∈ SO4: there
exist two 2-dimensional rotations σ and τ with α = σ ⊕ τ . Let σ = σ1σ2 and τ = τ1τ2,
for 2-dimensional reflections σ1, σ2, τ1, and τ2; then α = (σ1 ⊕ τ1)(σ2 ⊕ τ2). Notice that
σ1 ⊕ τ1 = (σ1 ⊕ ι)(ι ⊕ τ1), where ι is the identity map, hence σ1 ⊕ τ1 is the composite
of two 4-dimensional reflections, therefore it is a rotation (by π). Similarly for σ2 ⊕ τ2.
Now composites of involutions in O4 and SO4 are examined with quaternions.

Theorem 5·1, below, is a special case of [14, Theorem B]. Theorem 5·2, also below, is
a special case of the theorem from §7 of [14].

Theorem 5·1. For any α ∈ SO4 there are involutions σ and τ in SO4 with α = στ .

Proof. Let α(x) = axb, for a, b ∈ H, where |a| = |b| = 1. Choose a purely imaginary
unit vector c that is perpendicular to both a and b. By (2·1), the vectors d = ac and
e = cb are also purely imaginary. Define σ(x) = dxe and τ(x) = cxc. Bearing in mind
Lemma 2·2, check that these maps σ and τ have the required properties.

Theorem 5·2. Each map α ∈ O4 is expressible as the composite of two involutions.

Proof. It remains only to consider the case when α(x) = ax̄b, for |a| = |b| = 1. The
proof resembles the proof of Theorem 5·1, but with τ(x) = cx̄c.

The next proposition is used in §8·2: it shows that a map f in SO4 is reversible by an
anti-conformal map if and only if either f or −f is a rotation.
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Proposition 5·3. Let α ∈ SO4 be given by the formula α(x) = axb, where |a| = |b| =
1. There is a map β ∈ O4 \ SO4 with β−1αβ = α−1 if and only if |Re[a]| = |Re[b]|.

Proof. If |Re[a]| = |Re[b]| then either α = στ or α = −στ for reflections σ and τ , by
Theorem 3·7. In this case choose β = σ. Conversely, let β(x) = cx̄d, for unit quaternions
c and d, and suppose that β−1αβ = α−1. Then for all x ∈ H,

db̄d̄xc̄āc = β−1αβ(x) = α−1(x) = āxb̄.

By Lemma 2·3, either db̄d̄ = ā, in which case Re[a] = Re[b] (because the map x 7→ dxd̄

preserves the real line pointwise); or db̄d̄ = −ā, in which case Re[a] = −Re[b].

6. The 4-dimensional Möbius group

The Möbius group M4 is the group of transformations of R4
∞ generated by inversions

in R4
∞. The subgroup M+

4 of M4 consists of those transformations that are the com-
posite of even numbers of inversions. In §6·1 it is shown that M4 has a simple algebraic
representation in terms of quaternions. Then in §6·3 the maps in M4 are distinguished
according to their different dynamics.

6·1. Quaternionic representation of Möbius transformations

Let H∞ denote H ∪ {∞}. Consider the map f : H∞ → H∞ which is given by the
quaternion formula

f(x) = (ax + b)(cx + d)−1, ∆(f) 6= 0, (6·1)

where ∆(f) = |a|2|d|2+|b|2|c|2−2Re[ac̄db̄], and we adopt the usual special rules regarding
the point∞. (Namely, if c = 0 then f(∞) = ∞ and f is determined by (6·1) for all x ∈ H;
and if c 6= 0 then f(−c−1d) = ∞, f(∞) = ac−1, and f is determined by (6·1) for all
x ∈ H \ {−c−1d}.) If c 6= 0 then f = f1f2f3f4, where

f1(x) = x + ac−1, f2(x) = −(b− ac−1d)xc−1, f3(x) = −x−1, f4(x) = x + c−1d.

Notice that b− ac−1d 6= 0 since

|b− ac−1d|2 = ∆(f)/|c|2.
This equation and the decomposition f = f1f2f3f4 can be combined to show that f is
constant if ∆(f) = 0. The maps f1 and f4 are translations, f2 is a special orthogonal
map followed by a scaling, and f3 is inversion in the unit sphere followed by reflection in
the plane with equation Re[x] = 0. On the other hand, if c = 0 then neither a nor d can
be 0, since ∆(f) 6= 0. Therefore f = f5f6, where

f5(x) = axd−1, f6(x) = x + a−1b.

The map f5 is a special orthogonal map followed by a scaling and f6 is a translation.
All these maps f1, f2, f3, f4, f5, and f6 lie in M+

4 , hence f ∈M+
4 . To see the converse,

that each map in M+
4 is of the form (6·1), first observe that each member of M+

4 can be
expressed as the composite of translations, scalings, orthogonal maps, and maps of the
same form as f3. (This statement is well known. See, for example, [17, Theorem 4.4.4].)
Now, all translation, scalings, and orthogonal maps can be represented in the form (6·1),
and it is straightforward to verify that the composite of two maps f(x) = (ax + b)(cx +
d)−1 and g(x) = (a′x + b′)(c′x + d′)−1, with coefficients in H and ∆(f), ∆(g) 6= 0, is a
third map of the form h(x) = (a′′x + b′′)(c′′x + d′′)−1, also with coefficients in H. (That
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∆(h) 6= 0 follows because f and g are both bijections of H∞, therefore h is also, whereas
h is constant if ∆(h) = 0.) Therefore M+

4 can be described as the group of maps of the
form (6·1).

The group M+
4 is a subgroup of index 2 in M4. The group M4 is generated by M+

4

and the reflection x 7→ x̄, therefore the next theorem is proven.

Theorem 6·1. In terms of quaternions, the group M+
4 consists of all maps of the

form

x 7→ (ax + b)(cx + d)−1, ∆(f) 6= 0, (6·2)

with the usual conventions concerning the point ∞. The group M4 consists of all maps
of the above form, as well as maps of the form

x 7→ (ax̄ + b)(cx̄ + d)−1, ∆(f) 6= 0, (6·3)

with the usual conventions concerning the point ∞.

It is straightforward to check that the map f from (6·1) is the same map as the map
g(x) = (a′x + b′)(c′x + d′)−1, where ∆(g) 6= 0, if and only if there is a real number λ 6= 0
with a = λa′, b = λb′, c = λc′, and d = λd′. Similar comments apply in M−

4 . These facts
are not used in the sequel.

6·2. Conjugacy classes in the conformal Möbius group

Each map in M+
4 is freely homotopic to the identity map and therefore has a fixed

point, by the Lefschetz Fixed-Point Theorem. Möbius maps are distinguished according
to the their fixed points. A map f ∈M+

4 is
(i) parabolic, if it has only one fixed point;
(ii) loxodromic, if it has two fixed points p and q and, for each x ∈ H∞ \ {p, q}, the

sequence fn(x) converges to p;
(iii) elliptic, otherwise.

This trichotomy is invariant under conjugation, although it is not as fine a classification
of Möbius maps as a conjugacy classification. (That is, there are parabolic maps that
are not conjugate, and likewise for elliptic and loxodromic maps.) For any given Möbius
map f , we identify a map g conjugate to f which is of a simple algebraic form, and the
structure of g will depend on whether f is parabolic, loxodromic, or elliptic.

Lemma 6·2. A map f ∈ M+
4 with at least two fixed points is conjugate to a map of

the form x 7→ λaxb, where λ > 0, and a and b are unit quaternions. If λ = 1 then f is
elliptic, otherwise f is loxodromic.

Proof. Let p and q be two fixed points of f , where p 6= ∞. Define h ∈M+
4 as follows.

If q 6= ∞ then h(x) = (x − p)(x − q)−1 and if q = ∞ then h(x) = x − p. The map g

which is equal to hfh−1 fixes 0 and ∞. By Theorem 6·1, g(x) = λaxb for λ > 0 and unit
quaternions a and b. That is, g is an orthogonal map followed by a scaling. If λ 6= 1 then
g converges locally uniformly to either 0 (if λ < 1), or ∞ (if λ > 1), on H\{0}. Therefore
g (and f) are loxodromic. If λ = 1 then g is an orthogonal map, and the dynamics of g

differ from the dynamics of a loxodromic map.

It remains to consider the case when f ∈ M+
4 has one fixed point. Let ι denote the

identity map of H∞.
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Lemma 6·3. A parabolic map in M+
4 is conjugate to a map of the form x 7→ āxa + 1,

where a is a unit quaternion.

Proof. Each map in M+
4 is conjugate to a map f that fixes ∞. By Theorem 6·1, f

is of the form f(x) = λα(x) + c, for λ > 0, α ∈ SO4, and c ∈ H. Since f(x) = x has
no solutions in H, neither does the equation (λα− ι)(x) = −c, therefore (λα− ι) is not
invertible. This means that λ = 1 and there exists a unit quaternion y with α(y) = y.
Through conjugation, assume that y = 1. Suppose α(x) = bxa, where |a| = |b| = 1. Then
α(1) = 1 implies that b = ā. A unit vector in C can be found with real part equal to
Re[a]; thus by Proposition 3·4, a further conjugation can be applied so that f is assumed
to be of the form

f(x) = āxa + d,

where d = d1 + jd2; a, d1, d2 ∈ C; and |a| = 1. If a = 1 or a = −1, then choose
β ∈ SO4 with β(1) = d/|d| and define φ = |d|β. Otherwise, define φ(x) = pxp + q, where
p2 = d1 and q = jd2/(1 − a2). The complex number d1 is not 0, because when d1 = 0,
conjugation of f by x 7→ x + q yields an orthogonal map (with two fixed points). Check
that φ−1fφ(x) = āxa+1, which is the required result. (To perform this check, it is useful
to note that a, d1, d2, p ∈ C, therefore these four complex numbers commute. Also note
that āj = ja.)

6·3. Conjugacy classes in the Möbius group

Transformations in the group M4 are classified as parabolic, loxodromic, or elliptic
according to the criteria given at the beginning of §6·2. There are, however, anti-conformal
Möbius transformations without fixed points. For example, x 7→ − (x̄)−1 cannot have a
fixed point because x = − (x̄)−1 if and only if |x|2 = −1, which is impossible. These maps
without fixed points must be elliptic. They are classified fully in Lemma 6·5, but before
that lemma, two elementary properties of the map γ(x) = (x̄)−1, which is inversion in
the 4-dimensional unit sphere, are recorded.

Lemma 6·4. The map γ commutes with all orthogonal maps.

Proof. Let α(x) = axb, where |a| = |b| = 1. Then

γα(x) =
(
axb

)−1
=

(
b̄x̄ā

)−1 = αγ(x)

for all x ∈ H.

Let λ denote the map x 7→ λx, for some λ > 0. Notice that γλ = λ−1γ.

Lemma 6·5. If f is an anti-conformal Möbius map without a fixed point then f is
conjugate to αγ for some α ∈ SO4.

Proof. The map f2 has a fixed point p. Define q = f(p), then f(q) = p. By conjugation,
assume that p = 0 and q = ∞. Then fγ fixes 0 and ∞, hence fγ(x) = λα(x) for some
λ > 0 and α ∈ SO4. Let h(x) =

√
λx. Then h−1fh = αγ, as required.

The remaining members ofM−
4 have a fixed point. The proof of the next lemma, which

is omitted, resembles the proofs of Lemma 6·2 and Lemma 6·3.

Lemma 6·6. If f ∈ M−
4 has a fixed point, then f is conjugate to a map of one of
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the forms x 7→ ax̄b, x 7→ λax̄b, or x 7→ āx̄a + 1, for unit quaternions a and b, and
λ ∈ (0,∞)\{1}, depending on whether f is elliptic, loxodromic, or parabolic, respectively.

7. Involutions in the Möbius group

By applying suitable conjugations to achieve the simpler algebraic forms described in
Lemma 6·2, Lemma 6·3, and Lemma 6·6, we see that neither loxodromic nor parabolic
Möbius maps have finite order, therefore there are no loxodromic or parabolic involutions.

Elliptic Möbius maps that are conformal are conjugate to orthogonal maps, and the
involutive orthogonal maps were classified in §4. An elliptic Möbius map that is not
conformal either has a fixed point, in which case it is conjugate to an orthogonal map,
or it does not have a fixed point. If it does not have a fixed point then it is conjugate to
αγ, where α ∈ SO4 and γ is inversion in the 4-dimensional unit sphere, by Lemma 6·5.
Because α commutes with γ, the map αγ is involutive if and only if α is involutive.

8. Composites of involutions in the Möbius group

We prove Theorem 1·1 and Theorem 1·2 in this section. The analysis is split between
elliptic, loxodromic, and parabolic transformations.

8·1. Elliptic transformations

Recall from §6·2 and §6·3 that an elliptic Möbius map with a fixed point is conjugate
to an orthogonal map. Recall from §5 that each member of SO4 is expressible as the
composite of two involutions, and each member of O4 is expressible as the composite of
two involutions. Those Möbius maps without fixed points are conjugate to maps of the
form αγ, where α ∈ O4 and γ(x) = (x̄)−1. Choose σ and τ to be involutions in O4 such
that α = στ , then αγ = σ(τγ) is a decomposition into two involutions.

In summary, the elliptic members of M+
4 and M4 are reversible by involutions.

8·2. Loxodromic transformations

Throughout this section, γ ∈ M+
4 is the map given by the equation γ(x) = (x̄)−1.

Lemma 6·4 and the comment following that lemma are applied frequently in this section.

Theorem 8·1. Each loxodromic element of M4 is expressible as the composite of two
involutions.

Proof. Through conjugation, assume that a loxodromic map f ∈ M4 is of the form
f = λα, where λ > 0, λ 6= 1, and α ∈ O4. By Theorem 5·2, choose involutions σ, τ ∈ O4

with α = στ . Then

f = (λγσ)(γτ)

is the required decomposition.

The next proposition concerns the implication (i) ⇒ (iii) from Theorem 1·2.

Proposition 8·2. Let f ∈ M+
4 be given by the formula f(x) = λaxb, where λ > 0,

λ 6= 1, a, b ∈ H, and |a| = |b| = 1. If f is reversible, then |Re[a]| = |Re[b]|.
Proof. Let α denote the orthogonal map x 7→ axb. Since f is reversible, there is g ∈M+

4

with g−1fg = f−1. Hence f(g(0)) = g(0) and f(g(∞)) = g(∞). Since 0 and ∞ are the
only fixed points of f , either g(0) = 0 and g(∞) = ∞, or g(0) = ∞. In the former case,
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g is an orthogonal map followed by a scaling, that is, g(x) = µcxd, where µ > 0 and
|c| = |d| = 1. Therefore

λ = |g−1fg(1)| = |f−1(1)| = λ−1,

which is impossible as λ 6= 1. In the latter case, the map h = γg fixes 0 and ∞, therefore
h = µβ for some µ > 0 and β ∈ O4 \ SO4. The equation g−1fg = f−1 then reduces to
β−1αβ = α−1. The result now follows from Proposition 5·3.

The next theorem concerns the double implication (ii) ⇔ (iii) from Theorem 1·2. The
truth of the implication (ii) ⇒ (i) follows from the definitions, hence the three statements
(i), (ii), and (iii) from Theorem 1·2 are seen to be equivalent once Theorem 8·3 is proven.

Theorem 8·3. The loxodromic Möbius map f , defined by f(x) = λaxb, where λ > 0,
λ 6= 1, a, b ∈ H, and |a| = |b| = 1, is expressible as the composite of two involutions in
M+

4 if and only if |Re[a]| = |Re[b]|.

Proof. If f is expressible as the composite of two involutions, then it is reversible, and
the equality |Re[a]| = |Re[b]| follows from Proposition 8·2. Conversely, if |Re[a]| = |Re[b]|
then by Theorem 3·7, there are reflections σ and τ such that either f = λστ or f = −λστ .
Let g = λγσ and h = γτ in the first case, and replace g with −g in the second case, then
both g and h are involutions in M+

4 and f = gh.

Theorem 8·4. Each loxodromic element of M+
4 is the composite of three involutions.

Proof. It suffices to show that f = λα, where λ > 0 and α ∈ SO4, is the composite
of three involutions. Let α = στ , for involutions σ, τ ∈ SO4. By Proposition 4·1, either
σ(x) = axb, where a2 = b2 = −1; σ(x) = x; or σ(x) = −x. In the first case, by
Theorem 3·7, choose reflections σ1 and σ2 with σ = σ1σ2. In the second and third cases,
choose any reflection σ1, and define σ2 = σ1, in the second case, and define σ2 = −σ1, in
the third case. Then

f = (λγσ1)(γσ2)τ

is the required decomposition of f into three involutions.

8·3. Parabolic transformations

Theorem 8·5. Each parabolic map in M+
4 is the composite of two involutions.

Proof. By conjugating, assume that a parabolic map f has the form f(x) = āxa +
1, for some unit quaternion a. Choose a purely imaginary unit quaternion c that is
perpendicular to a, then the vector b = −ca is also purely imaginary. Using Lemma 2·2,
check that a = cb, ā = bc, and f = στ , where σ(x) = bxb + 1 and τ(x) = cxc are
involutions.

Theorem 8·6. Each parabolic map in M4 is the composite of two involutions.

Proof. A parabolic map g ∈ M4 \M+
4 has the form g = fφ, where f is a parabolic

map in M+
4 and φ(x) = x̄. Recall the decomposition f = στ from Theorem 8·5. Then

g = σ(τφ) is also a decomposition into two involutions.
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[13] F. Knüppel and K. Nielsen. On products of two involutions in the orthogonal group of a

vector space. Linear Algebra and its Applications, 94:209–216, 1987.
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