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Abstract

Let G be a group. We say that an element f ∈ G is reversible in G if it
is conjugate to its inverse, i.e. there exists g ∈ G such that g−1fg = f−1.
We denote the set of reversible elements by R(G). For f ∈ G, we denote by
Rf (G) the set (possibly empty) of reversers of f , i.e. the set of g ∈ G such
that g−1fg = f−1. We characterise the elements of R(G) and describe each
Rf (G), where G is the the group of biholomorphic germs in one complex variable.
That is, we determine all solutions to the equation f ◦ g ◦ f = g, in which
f and g are holomorphic functions on some neighbourhood of the origin, with
f(0) = g(0) = 0 and f ′(0) 6= 0 6= g′(0).

1 Introduction

1.1 General Setting

Let G be a group. We say that an element f ∈ G is reversible in G if it is
conjugate to its inverse, i.e. there exists g ∈ G such that g−1fg = f−1. We

1Supported by Grant SFI RFP05/MAT0003 and the ESF Network HCAA.
2Mathematics Subject Classification 2000: 30D05, 39B32, 37F99, 30C35.
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denote the set of reversible elements by R(G). For f ∈ G, we denote by Rf (G)
the set (possibly empty) of reversers of f , i.e. the set of g ∈ G such that
g−1fg = f−1.

The set R(G) always includes the set I(G) of involutions (elements of order at
most 2). Indeed, it also includes the larger set

I2(G) = {τ1τ2 : τi ∈ I(G)}

of strongly-reversible elements, i.e. elements that are reversed by an involution.

If g ∈ G reverses f ∈ G, then g2 commutes with f , i.e. g2 belongs to the
centraliser Cf (G). More generally, the composition of any two elements of Rf (G)
belongs to Cf (G). For this reason, an understanding of centralisers in G is a
prerequisite for an understanding of reversers.

The following easily-proved theorem characterises the reversers of an element, in
any group.

Theorem 1.1 (Basic Theorem). Let G be a group and f, g ∈ G. Then the
following three conditions are equivalent:

1. g ∈ Rf (G);

2. there exists h ∈ G with g2 = h2 and f = g−1h;

3. there exist h ∈ G such that f = gh and f−1 = hg.

This then yields two characterisations of reversibility:

Corollary 1.2. Let G be a group and f ∈ G. Then the following three conditions
are equivalent:

1. f ∈ R(G);

2. there exist g, h ∈ G with g2 = h2 and f = g−1h;

3. there exist g, h ∈ G such that f = gh and f−1 = hg.

This shows that reversibility is interesting only in nonabelian groups in which
there are elements with multiple square roots. In any specific group, it is inter-
esting to give more explicit characterisations of reversibility than those of this
theorem.
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This paper is about the reversible elements in the group of invertible biholomor-
phic germs and some of its subgroups.

We shall characterise these elements, and their reversers, and the strongly-
reversible elements, in explicit ways. We shall also consider some related ques-
tions.

The theory of reversibility for formal power series in one variable has already
been dealt with in [10]. We shall see (cf. Section 4) that there exist germs f ∈ G
that are formally reversible, but not holomorphically reversible.

1.2 Our specific groups

For the remainder of the paper, we shall denote by G the group of biholomorphic
germs at 0 in one complex variable. Thus an element of G is represented by
some function f , holomorphic on some neighbourhood (depending on f) of 0,
with f ′(0) 6= 0, and two such functions represent the same germ if they agree on
some neighbourhood of 0. The group operation is composition. The identity is
the germ of the identity function 11.

The multiplier map m : f → m(f) = f ′(0) is a homomorphism from G onto the
multiplicative group C× of the complex field.

Obviously, since C× is abelian, the value m(f) depends only on the conjugacy
class of f in G.

We denote

H = {f ∈ G : m(f) = exp(iπq), for some q ∈ Q},
H0 = {f ∈ G : m(f) = ±1} = kerm2,

and
G1 = kerm.

These normal subgroups have G1 ≤ H0 ≤ H ≤ G.

Further, for p ∈ N, we define

Gp = {f ∈ G1 : f (k)(0) = 0 whenever 2 ≤ k ≤ p},

and
Ap = Gp ∼ Gp+1.

Then G1 is the disjoint union of {11} and the sets Ap. For f ∈ G1, with f 6= 11,
we denote by p(f) the unique p such that f ∈ Ap. The natural number p(f) is a
conjugacy invariant of f (with respect to conjugation in G), so that each Gp is
a normal subgroup of G.

For f ∈ Gp, we may write f(z) = z + fp+1z
p+1 +O(zp+2). The map f 7→ fp+1 is

a group homomorphism from Gp onto (C,+). Thus fp+1 is a conjugacy invariant
of f in Gp. It is even invariant under conjugation in G1, but it is not invariant
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under conjugation in G. Each f ∈ Ap may be conjugated to the form g−1fg =
z+zp+1+a(f)z2p+1+O(z2p+2), and then the complex number a(f) is a conjugacy
invariant of f in G.

The invariants p(f) and a(f) classify the elements of G1 ∼ {11} up to formal con-
jugacy. The complete biholomorphic conjugacy classification requires additional
invariants, and these have been provided by the equivalence class of the EV data
Φ(f) of Écalle-Voronin theory, which is reviewed briefly in Section 2 below.

For f ∈ H0 ∼ G1, a complete set of conjugacy invariants (with respect to
conjugacy in G) is provided by m(f) = −1 and the conjugacy class of f 2, which
belongs to G1. (See Theorem 2.3 below.)

1.3 Summary of results

It is obvious that each group homomorphism maps the reversible elements of its
domain to reversible elements of its target, and that the only reversible elements
in an abelian group are its involutions. Hence R(G) ⊂ H0. Consequently, the
reversible elements in all subgroups of G lie in H0.

Also, it is always true that for f ∈ G1, p(f) = p(f−1). Also, by purely formal
considerations [10], the condition a(f) = a(f−1) is equivalent to a(f) = (p(f) +
1)/2. Thus the short answer to the question of which f ∈ G are reversible in G
is the following:

Proposition 1.3. Let f ∈ G. Then f ∈ R(G) if and only if (exactly) one of the
following holds:

1. f ′(0) = 1, and Φ(f) is equivalent to Φ(f−1);

2. f ′(0) = −1, and f 2 ∈ R(G).

For Part 2, see Corollary 4.1. However, we can provide much more explicit
information about reversibility in G.

In general groups, a reversible element f may have no reversers of finite order.
If there is a reverser of finite order, then there is one whose order is a positive
power of 2. Only involutions can have a reverser of odd order. In our present
group G, we have the following:

Theorem 1.4. Let f ∈ Ap, for some p ∈ N, and g ∈ Rf (G). Then g has finite
even order 2s, for some s ∈ N with p/s an odd integer.

We shall give examples (cf. Section 4) to show that there are f ∈ G for which
the lowest order of a reverser is any preassigned power of 2.

We can be rather more precise about the order of reversers, but we have to
distinguish between “flowable” and “non-flowable” reversible germs f .
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Definition. By a flow in G1 we mean a continuous group homomorphism t 7→ ft

from (R,+) (a real flow) or (C,+) (a complex flow) into G1.

A germ f ∈ G1 is called flowable if and only if there exists a flow (ft) with f1 = f .

The more precise result about reversers involves technical parameters that are
associated to a reversible germ f ∈ G1, and we shall give the statement and
proof later (cf. Section 5), after we have explained these parameters.

Theorem 1.5. let f ∈ Ap, for some p ∈ N. Then f ∈ R(G) if and only if it may
be written as g−1h, where g, h ∈ H are germs of finite even order 2s, g2 = h2,
s|p, and p/s is odd.

As is well-known, each germ of finite order in G is conjugate in H to a rotation
through a rational multiple of π radians. Indeed an elements g ∈ G of finite
order δ must have multiplier β = m(g) a δ-th root of unity, and is conjugate in
H to z 7→ βz; in fact the function

1

δ

(
z +

g(z)

β
+ · · ·+ gδ−1(z)

βδ−1

)
provides a conjugation.

Theorem 1.6. Let f ∈ Ap, for some p ∈ N. Then f ∈ R(G) if and only if there
exists ψ ∈ H such that

(ψ−1fψ)(z) = z + zp+1 +
∞∑

k=1

ckz
sk+p+1, (1.1)

where p/s is an odd integer, and

(ψ−1f−1ψ)(z) = z − zp+1 +
∞∑

k=1

(−1)kckz
sk+p+1. (1.2)

(In other words, f1 = ψ−1fψ is reversed by z 7→ exp(πi/s)z.)

We shall give examples (cf. Section 4) to show that each p ∈ N and each s|p
with p/s odd may occur.

These results allow us to understand reversibility in G: One reverses a germ f
essentially by “rotating” it (using a rotation modulo conjugacy), so as to swap
the attracting and repelling petals of its Leau flower.

We note some consequences:

Corollary 1.7. Let f ∈ G. Then f ∈ R(G) if and only if f 2 ∈ R(G).

The strongly-reversible elements of G were already identified (in terms of EV
data) in [5], but we note the result, which follows immediately from Theorem 1.4
above:
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Corollary 1.8. Let f ∈ G. Then f ∈ I2(G) if and only if f ∈ R(G) and one of
the following holds:

1. f ∈ I(G), or

2. f ∈ Ap with p odd.

We note that the case p = 1 was already given by Voronin [13].

The following summarises our conclusions about reversibility in all the above-
named subgroups of G:

Corollary 1.9. For each p ∈ N, we have

(11) = R(Gp) = R(G1) ⊂ R(H0) = I2(G) ⊂ R(H) = R(G) ⊂ H0,

and the three inclusions are proper.

2 Conjugacy

Definition. Let p ∈ N. Let S denote the set of all functions h that are defined
and holomorphic on some upper half-plane (depending on h), and are such that
h(ζ)−ζ is bounded and has period 1. By Écalle-Voronin p-data (or just EV data)
we mean an ordered 2p-tuple Φ = (Φ1, . . . ,Φ2p), where Φ1(ζ),−Φ2(−ζ),Φ3(ζ),
. . .,−Φ2p(−ζ) ∈ S.

Given EV p-data Φ and q-data Ψ, we say that they are equivalent if p = q and
there exist k ∈ Z and complex constants c1,. . .,c2p, such that for each j we have

Φj+2k(ζ + cj) = Ψj(ζ) + cj+1,

(where we define Φj, Ψj and cj for all j ∈ Z by making them periodic in j, with
period 2p).

Let f ∈ G1. Let p = p(f). Voronin [12] described how to associate Écalle-Voronin
data Φ(f) = (Φ1, . . . ,Φ2p) to f . We shall not recapitulate the construction here1,
but roughly speaking the Φj are obtained as (analytic extensions of) compositions
Fj ◦F−1

j+1, where the Fj are conformal maps of alternately attracting and repelling
Leau petals for f , which conjugate f on the petals to translation by 1 near ∞.
Essentially the same construction was discovered independently by Écalle [9].
They proved the following:

Theorem 2.1 (Conjugacy). Let f, g ∈ G1. Then f is conjugate to g in G if and
only if Φ(f) is equivalent to Φ(g).

1For a detailed description, see Voronin’s paper [12] or (for full details when p > 1) [5,
pp.7-19]. The case p > 1 was first fully elaborated by Yu. S. Ilyashenko [6].
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Theorem 2.2 (Realization). Given any EV data Φ, there exists a function f ∈
G1 having equivalent EV data.

For f ∈ H, the expositions in print usually say that the conjugacy classification
is easily reduced to the case of multiplier 1. We need to consider multiplier −1, so
we need a precise statement. The result goes back to Muckenhoupt [7, Theorem
8.7.6, p. 359].

Theorem 2.3 (Muckenhoupt). Suppose that f, g ∈ H both have the same mul-
tipier λ, a primitive s-th root of unity, where s ∈ N. Then f and g are conjugate
in G if and only if f s and gs are conjugate in G.

We supply a proof, partly for the reader’s convenience, but also because we wish
to draw a useful corollary from it.

Proof. It is evident that if h−1fh = g, then h−1f sh = gs.

For the other direction, suppose that there exists h ∈ G with h−1f sh = gs.

We have (h−1fh)s = gs, and m(h−1fh) = λ. So it suffices to show that{
m(f) = m(g) = λ
f s = gs

}
⇒ f is conjugate to g.

Let k = f s. Then k ∈ G1.

If k is the identity, then f and g are periodic with the same multiplier, so they
are conjugate.

If k is not the identity, then the centraliser of k is abelian (see Theorems 3.1 and
3.2 below). Since f and g belong to it, they commute with each other, hence
(f−1g)s = f−sgs = 11. But f−1g ∈ G1, so f−1g = 11, and f is actually equal to g.

Corollary 2.4. If f, g ∈ H have as multiplier the same n-th root of unity, and
fn 6= 11, then each h ∈ G that conjugates fn to gn will also conjugate f to g.

3 Centralisers

The facts about Cf (G), for f ∈ G1, were established by Baker and Liverpool
[1, 2, 3, 4] (see also Szekeres [11]).

We may summarise the facts about centralisers as follows:

Theorem 3.1. Suppose that p ∈ N and f ∈ Ap is flowable. Then Cf (G) is an
abelian group, equal to the inner direct product

{ft : t ∈ C} × {ωj : 0 ≤ j ≤ p}

where (ft)t∈C is a complex flow, and ω ∈ H has finite order p.

7



It follows from Theorem 3.1 that if f ∈ G1 is flowable then Cf (G1) is the flow
(ft)t∈C. It is a remarkable result of Baker and Liverpool that in the non-flowable
case Cf (G1) is an abelian group with a single generator g. Since f ∈ Cf (G1) we
have f = gd for some integer d (which we can assume to be positive (by replacing

g by g−1 if necessary). This g, which is unique, is usually denoted by f
1
d .

Theorem 3.2. Suppose f ∈ Ap is not flowable. Then Cf (G) is abelian, and there
exist positive integers q and δ with δ|q and q|p and elements τ and ω ∈ Cf (G)
such that

1. Cf (G)/Cf (G1) is cyclic of order q,

2. Cf (G) is generated by τ and f 1/d

3. ω has finite order δ,

4. we have a direct product decomposition Cf (G) = 〈τ〉 × 〈ω〉, and finally

5. we have the relation
τ

q
δ = ωf1/d.

The formal centraliser of an f ∈ G1 (other than 11) is always isomorphic to the
product of a flow and a finite cyclic group. Thus Cf (G1) is isomorphic to an
additive subgroup of C. The achievement of Baker and Liverpool was to show
that the only possible subgroups that can occur are C itself and an infinite cyclic
group Zα, for some α ∈ C. In the latter case, f has only a finite number of
compositional roots. In particular, if f is real-flowable, or infinitely-divisible, or
lies in the image of a Z2 action, then it must be complex-flowable.

Voronin [12] used the EV data to characterise divisibility of the elements f ∈ G1,
i.e. the existence of composition roots. In fact, for a given f ∈ G1 and k ∈ N,
there exists g ∈ G1 with gk = f , if and only if Φ = Φ(f) satisfies

Φj(ζ +
1

k
) = Φj(ζ) +

1

k
,

for j = 1, . . . , 2p(f).

In view of the Realisation Theorem, this means that generic f ∈ G1 have no
roots at all.

The above theorems are deep, but may be proved rather more easily than in
the the original papers, by using Voronin’s approach [12]. The flowable f ∈ G1

are characterised as those that have EV data equivalent to Φj(ζ) = ζ + λj, for
constant λj, i.e. data that are translations.

8



4 Reversers

After these preliminaries, we are ready to discuss reversibility in G. First, we
deal with the case m(f) = −1. Then we proceed to prove the results stated in
Section 1.3, and to provide the examples promised.

4.1 Multiplier −1

First, we deal with the case m(f) = −1. From Corollary 2.4 we deduce:

Corollary 4.1. Let f ∈ G have f ′(0) = −1. Then (i) f is an involution or
Rf (G) = Rf2(G), and (ii) f ∈ R(G) ⇔ f 2 ∈ R(G).

4.2 Proof of Theorem 1.4

We make use of formal series arguments below. It is also possible to prove some
of the results by considering separately the flowable and non-flowable germs, and
using the Baker-Liverpool theory on the latter.

Let G denote the group of formally-invertible series, under the operation of formal
composition.

To prove Theorem 1.4, fix p ∈ N, a reversible f ∈ Ap, and g ∈ Rf (G).

Since f ∈ R(G), then considered as a formal series, it belongs to R(G). Hence
[10, Corollary 6] there exists a formal series τ ∈ Rf (G), of order 2p.

Formally, f is uniquely flowable [1], i.e. there exists a unique flow (f t)t∈C in G

with f 1 = f . Also, Cf (G) is the set generated by τ 2 and the f t, t ∈ C. This is
well-known [1, 4, 8], but quite concretely f is formally-conjugate [10, Theorem
5] to

z

(1 + zp)1/p
,

and the same conjugacy takes f t(z) to

z

(1 + tzp)1/p
.

For all t ∈ C, the latter commutes with z 7→ exp(2πi/p)z, and is reversed
z 7→ exp(πi/p)z, and τ is obtained by conjugating the latter back.

In particular, τ reverses each f t, for t ∈ C.

Now τ−1g ∈ Cf (G), and hence τ−1g = τ 2rf t for some r ∈ Z and t ∈ C, so g =
τmf t for for an odd m ∈ Z. Since τm reverses f t, we get g2 = τmf tf−tτm = τ 2m,
so the order of g2 divides p, so the order of g is finite, dividing 2p.

The order of g cannot be odd (since f is not involutive), and hence it is 2s, for
some s|p. Finally, if p/s were even, we would have m(g)p = 1, but a simple
formal calculation shows that g cannot reverse f unless m(g)p = −1.
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4.3 Proof of Theorem 1.5

This is immediate from Corollary 1.2(2) and Theorem 1.4.

4.4 Proof of Theorem 1.6

Suppose f ∈ R(G). By Theorem 1.4, there exists g ∈ Rf , of order 2s, with p/s
odd. Thus there is a function ψ ∈ H that conjugates g to βz, where β = m(g).

Then ψ−1fψ is reversed by βz, and commutes with β2z. Since β2 is a primitive
s-th root of unity, it follows that ψ−1fψ takes the form given by equation (1.1).
Since βz reverses it,

ψ−1f−1ψ(z) = β−1(ψ−1fψ)(βz)

takes the form (1.2).

This proves one direction, and the converse is obvious.

4.5 Proof of Corollary 1.7

It is true in any group that f ∈ R(G) ⇒ f 2 ∈ R(G). For the converse in our
specific G, there are two cases: m(f) = ±1.

If m(f) = 1, and f 2 ∈ R(G), then we have seen in the proof of Theorem 1.4
that each reverser of f 2 reverses each element of the formal flow (f 2)t, and hence
reverses (f 2)1/2 = f . (Observe that if a convergent series is formally reversed by
a convergent series, then it is holomorphically reversed by it, too.)

If m(f) = −1, and f 2 ∈ R(G), then we have f ∈ R(G) by Proposition 1.3, Part
2.

4.6 Example: Reversible germ, not reversible by any germ
of order dividing 2k

Fix any even p ∈ N, and take s = p. Let µ ∈ G be multiplication by a primitive
s-th root of −1. Take φ ∈ G1 commuting with µ2, but not with µ. (This may
be done, for instance, by taking φ(z) = z + zs+1.) Take g = µ, h = φ−1µφ, and
f = g−1h. Then a calculation shows that g2 = h2 has order s (and hence g is
a reverser for f of order 2s), and that f ∈ Ap. In case p = 2k+1, we see (by
Theorem 1.4) that no element of order 2k can reverse f .

Another example is provided by the function z(1 + zp)−1/p used in the proof
of Theorem 1.4, in view of Corllary 1.8. Examples of this kind may also be
constructed (rather less concretely) by appealing to the Realization Theorem).
However, the Realization Theorem is the best way to do the next thing:
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4.7 Example: Non-flowable reversible germ

Fix any p ∈ N, and take EV data Φ, where

Φ1(ζ) = ζ + exp(−2πiζ), Φ2(ζ) = ζ − exp(2πiζ),

and Φj+2 = Φj for all j.

By the Realization Theorem, there is some f ∈ Ap with EV data Φ(f) equivalent
to Φ. Hence this f is reversible, by Proposition 1.3, because (−Φj+1(−ζ)) is the
EV data for f−1. (This is so, because the consecutive attracting and repelling
petals for f are, respectively, repelling and attracting for f−1, and because Fj+1

conjugates f−1 in the j + 1-st petal to to ζ 7→ ζ − 1 near ∞, so that −Fj+1(−·)
conjugates f−1 to ζ 7→ ζ+1, so that the EV recipe gives −Fj+1(−−F−1

j+2(−ζ)) =
−Φj+1(−ζ) as EV data for f−1.)

But since Φ1 is not a translation, f is not flowable.

4.8 Example: Formally-reversible germ, not reversible in
G

Let Φ1(ζ) = ζ + e−2πiζ and Φ2(ζ) = ζ. If f realizes this EV data then a(f) =
1 = (p + 1)/2 by the formula on top of page 19 of [5], and hence f is formally
reversible, but these data do not have the symmetry required of reversible germ
data.

5 The Order of a Reverser

Flowable reversible germs f ∈ Ap are very special: they form a single conjugacy
class – all are conjugate to z/(1 + zp)1/p, and all reversers for them have order
dividing 2p. The possible orders are precisely the divisors of 2p of the form 2ku,
where u|p is odd, and 2k is the largest power of 2 dividing 2p.

In the nonflowable case, we can relate the possible orders for reversers to the
centraliser generators τ , ω, and the natural numbers d, q and δ of Theorem
3.2. The numbers d, q, and δ are uniquely-determined by f : the 1/d-th power
of f is the smallest positive power that converges, q is the index of Cf (H1) in
Cf (G) = Cf (H), and δ is the order of the (cyclic) torsion subgroup of Cf (G).
The germ ω may be any generator of this torsion subgroup; we may specify a
unique ω by requiring that the multiplier m(ω) = e

2πi
δ (as opposed to some other

primitive δ-th root of unity).

Theorem 5.1. Let p ∈ N, and suppose f ∈ Ap is reversible but not flowable.
Let τ, ω and d, q, δ be as in Theorem 3.2. Then
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1. If g ∈ Rf (G) then g commutes with ω, and g reverses f r/d, for each r ∈ Z.

2. δ = q, and p
q

is odd.

3. If we choose ω such that m(ω) = e
2πi
δ , then we have

{g2 : g ∈ Rf (G)} = {ωl : l is odd},

and we always have

{ord(g) : g ∈ Rf} = {2r ∈ N : r|q, and q/r is odd}.

Proof. We abbreviate Rf = Rf (G). (1) Since g (and hence g−1) reverse f and
ω commutes with f we see that gωg−1 commutes with f , has order δ and has
the same multiplier as ω, and so it equals ω. To show the second part of 1, it
suffices to deal with the case r = 1. Again gf

1
d g−1 commutes with f and it has

multiplier 1 so gf
1
d g−1 = f

l
d for some l. Raise both sides of the last equation to

the power d to get f−1 = f l and so l = −1 as desired. This proves part 1.

(2) We know that if g ∈ Rf then g′(0)p = −1, g2 commutes with f and that g has

finite order. It follows that g′(0) = e
πim

p where m is odd. Since g2 is periodic and

commutes with f we have g′(0)2δ = 1 i.e. e
2πimδ

p = 1. This means that m = p
δ
l

for some integer l. Since m is odd, so also are p
δ

and l. So far we have seen that
p
δ

is odd. Now we show that q = δ. Now gτg−1τ−1 commutes with f and has
multiplier 1 so gτg−1τ−1 = f

n
d for some integer n. If we take this last identity

and raise both sides to the power q we get gf
δ
d g−1f

−δ
d = f

qn
d . Now using the

fact that g reverses f
l
d we arrive at −2δ = qn. So −2 = q

δ
n so that q

δ
is either 1

or 2. But q = 2δ is not consistent with the fact that p
δ

is odd. Hence q = δ.

(3) Pick any g ∈ Rf . We already know from Theorem 1.4 that g has finite order.
Since g2 ∈ Cf , it follows that g2 belongs to the torsion subgroup, and hence
is a power ωl. If l were even, then m(g)p = 1, but a reverser of f must have
m(g)p = −1. This proves that

{g2 : g ∈ Rf} ⊂ {ωl : l is odd}.

To see the opposite inclusion, fix g0 ∈ Rf , with g2
0 = ωl. Then ωjg0 ∈ Rf

whenever j ∈ Z, and the square of this reverser is ω2jg2
0 = ωl+2j. Letting j run

through δ consecutive integers, we get each odd power of ω. Thus

{g2 : g ∈ Rf} = {ωl : l is odd}.

We conclude that the possible values of ord(g) are the numbers 2 ord(ωl), where l
ranges over the odd numbers. Since ω has order δ = q, the order of ωl is r = q/u,
where u is the greatest common divisor of l and δ. Since l is odd, u must be odd
as well. Conversely, suppose that r is a divisor of q and u = q/r is odd. Then by
the last equation there is a g ∈ Rf with g2 = ωu, which obviously has order r.
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Corollary 5.2. If p = 2ku where u is odd, and f ∈ Ap is nonflowable and
reversible in G, then δ = q = 2kn where n divides u. The largest order for a
reverser of f is 2δ and the smallest order is 2k+1.

Note that in the flowable case, this corollary also holds (with, additionally, q = p).

Using EV theory it can be shown that given any positive integer p and any
divisor q of p such that p

q
is odd then there is a reversible f ∈ Ap such that the

associated qf = q, and in fact an infinite dimensional set of inequivalent ones.
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