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It’s never easy for a mathematician to explain to the common reader what he does.
A modicum of technical knowledge is indispensible for understanding even the content of
undergraduate programmes, and few attain this, even in the scientific community. Apart
from its depth and sophistication, which Mathematics shares with some other areas of
enquiry, there is also the unusual feature of its cumulative success. Whereas natural
scientists tend to re-invent their disciplines periodically, jettisoning as baggage, or even
rejecting as disproved, the theories of yesteryear, and others such as philosophers endlessly
assail the same perenniel questions, mathematicians continue to treasure the achievements
of the remote past, and to build on them. This makes for a formidable barrier to entry by
the casual tourist.

Mathematics is tightly interconnected, each area threading into the others in manifold
ways. For this reason, my research extends into many corners, depending on the needs
of the moment. However, my centre of gravity lies in Mathematical Analysis. Here I use
Analysis in its modern mathematical sense, which is different from its ancient mathemat-
ical sense. Analysis is that area of Mathematics (about a third of the whole) in which
topological ideas predominate. In relatively lay terms, it is concerned with such concepts
as limits, infinite sets and processes, approximation, continuity, differential and integral
calculus, smooth functions, nonlinear processes, dynamical systems, sequences and series.
In more general terms, it is concerned with the precise manipulation of ideas such as ‘close
to’, ‘shaped like’, ‘rapidly–changing’, and concepts such as length, area, and volume. Anal-
ysis is extremely useful. Without it, most of the civilized amenities we enjoy would not
exist. Archimedes had some ideas that belong to Analysis, but the subject really began
in the seventeenth century, with Newton and Leibniz. It provides the bedrock for the
technology we have developed since then, and also for our present understanding of the
natural world — not that I wish to exaggerate this understanding. Of more interest to
me is the rather unexpected fact that Analysis finds application in relation to many of the
great open questions in Mathematics, including the problems that seem to lie in the other
two–thirds. I will give one example.

For about 2300 years, the problem whether or not the circle could be squared was
open. ‘Squaring the circle’ has recently become a cliché of journalists, and its original
sense has been lost in the process. The problem was whether, using only straight–edge
and compass, one could construct a square having the same area as a given circle. The
context of Euclidean Geometry is assumed. By the early nineteenth century it was realised
that the answer would be no, provided the number π were transcendental. A number x is
transcendental if there are no whole numbers a0, a1, . . .,an (not all zero) such that

a0 + a1x + · · ·+ anxn = 0. (1)

This converted the problem from a problem about geometry to a problem about real
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numbers. Eventually, in 1882, Lindemann used methods of Analysis to show that π is
indeed transcendental, so the circle cannot be squared. Hobson, in his little book on
the subject (cf. [1]), remarks that perhaps the most striking aspect of this story is the
monumental patience of the mathematical community (regarded as a single organism),
which ground away at this problem for thousands of years until the necessary ideas were
assembled to solve it.

We live in interesting times. Perhaps half the serious mathematicians who have ever
lived are alive today, working conditions are generally good, and the pace of progress is
breathtaking. People will probably have heard about the proof by Wiles of Fermat’s Last
Theorem a few years ago, and the proof of the Four-colour Theorem by Appel and Haken
in the eighties. Many of the great problems extant when I was a boy have been settled,
although few are intelligible to non–experts. People even talk about plans for proving the
Riemann hypothesis. This problem dates from about 1850, and is not so easy to describe
as the problem of squaring the circle. The formula

ζ(s) =
∞∑

n=1

1
ns

(2)

defines a real–valued function ζ(s) when s is a real number greater than 1. It is also possible
to consider complex numbers s, and the series then converges to a complex number ζ(s)
whenever the real part of s is greater than 1. This function ζ(s), thus a priori defined for
some complex numbers, can be extended in a unique canonical way to all complex s except
s = 1, even thought the formula makes no sense except when the real part of s is greater
than 1. The way to extend it is as an analytic function. This means that the complex
derivative

ζ ′(s) = lim
h→0,h complex

ζ(s + h)− ζ(s)
h

(3)

exists at each s except 1. There are subtle connections between this function and the
distribution of the prime whole numbers, and various questions about the factorization of
whole numbers. Now it turns out that ζ(s) = 0 when s = −2,−4,−6,. . ., and that there
are many other s with ζ(s) = 0 of the form s = σ + iτ with σ between 0 and 1. Riemann
conjectured that all these other ‘zeros’ have σ exactly equal to 1

2 . Most people believe this
is probably true, and it has been verified for millions of the zeros, but a proof is lacking in
general. Personally, I believe that a proof is still far away.

Analytic functions, described above as those having a “complex derivative”, may also
be described as those having local power series expansions

f(z) =
∞∑

n=0

an(z − an)n, z near a (4)

or as those satisfying special integral identities∫
Γ

f(z)dz = 0 (5)
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or

f(a) =
1

2πi

∫
Γ

f(z)
z − a

dz. (6)

They have extraordinarily tight properties, not least the equivalent descriptions just men-
tioned. I first heard about them at the age of 18, and was immediately hooked. The power
of analytic function theory is quite uncanny; one is repeatedly surprised and delighted by
the amazing results and the unexpected applications. I’ve spent most of the last 35 years
exploring them.

One can consider analytic functions f(z1, . . . , zd) of several complex variables instead
of one. I am interested in questions about the iteration of such functions, their singulari-
ties, and their approximation. I am interested in questions about special families of such
functions. These questions, in turn, provoke questions about structures such as Banach
spaces of functions, algebras of functions, about integral estimates, capacities and Haus-
dorff measures, about polynomial hulls and the geometry of complex manifolds, about
extension problems, derivations, harmonic functions, pseudoconvexity, etc.

Right now, Alejandro Sanabria and I are thinking about the so–called pervasive al-
gebras of analytic functions, in the context of Riemann surfaces. I will try to explain the
idea.

Let’s start with ‘algebra’. Algebra is the name of another third of Mathematics,
that part concerned, roughly speaking, with the ramifications of formal manipulation of
expressions. Included within its scope are many kinds of ‘algebraic structure’, by which I
understand a set equipped with some operations. Examples are the structures known as
groups, rings, fields, vector spaces, categories, and (confusingly enough) algebras. In other
words, an algebra is a special kind of algebraic structure, and the theory of algebras is
a small part of Algebra. There are many (infinitely many) algebras in this sense. Each
is a set of objects, equipped with operations called addition, multiplication, and scalar
multiplication, satisfying certain axioms, such as the distributive law

a(b + c) = ab + ac (7)

and the associative law of multiplication

a(bc) = (ab)c. (8)

For example, the set of complex numbers, equipped with its usual operations, is an algebra.
Next, take ‘function’. A function on a set A is a rule that produces exactly one value

f(x) for each element x belonging to the set A. The value f(x) may be an object of a
different kind to x. If the values lie in a set B, one calls f a B–valued function. For
instance, the rule x 7→ x2 takes each complex number x and produces the complex number
x2. This is an example of a complex–valued (C–valued) function on the set C of complex
numbers. You will recall that the set of complex numbers may be visualised as a plane (the
Argand diagram, die Gaussische Ebene). This allows geometric thinking about complex
numbers.

Now fix the set A and consider the set of all C–valued functions on A. This set
inherits an algebra structure from the algegra structure of C. One just defines the sum
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and product of two functions f and g by setting

(f + g)(x) = f(x) + g(x),
(fg)(x) = f(x)g(x),

whenever x belongs to A. Thus we obtain an algebra of functions. It contains many smaller
algebras of functions.

If all the functions in an algebra of functions are analytic, then we have an algebra of
analytic functions. For this, the underlying set A should be C, or a higher–dimensional
complex space Cd, or perhaps a more general object. The most general case is that in
which A is a complex manifold, something that looks locally like Cd, but has a more
interesting global shape, rather in the way that a sphere is more interesting than a plane.
A one–dimensional complex manifold is called a Riemann surface, and examples of these
look like a sphere or a torus.

We are studying algebras of analytic functions on a Riemann surface.
The algebras we study have a topology. This means that we can talk about the approx-

imation of one function (belonging to the algebra) by a sequence of others. Pervasiveness
is related to approximation. Rather than describe the general notion, I will just give an
example.

If you remove a small piece from a circle contained in the complex plane, then you
can approximate any given continuous complex–valued function as closely as you like on
the rest of the circle, using functions analytic inside the circle. Last year (together with
Ivan Netuka from Prague) we investigated the extent to which this phenomenon depends
on the particular geometry of circles, and we found that it matters very little. The disc
may be replaced by any ‘open, connected’ set. We completed a thorough analysis of this
phenomenon in the plane (cf. [2]). But the plane is the simplest Riemann surface, so
currently we are examining the corresponding phenomenon on general ‘open’ Riemann
surfaces. We are also looking at the phenomenon in another interesting context, that of
certain subsets of the boundary of pseudoconvex open sets in two complex variables.

On the back burner while we pursue this work, are some other questions in several
complex variables. I will not attempt to describe these here.
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