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Abstract: We consider dynamical systems that admit a time-reversal sym-
metry, especially in the case when the symmetry is an involution. We give
a complete local classification of the one—dimensional real-analytic examples
of such systems (near a common fixed point of the system and symmetry),
and we observe that they never have stable fixed points. We show that this
feature carries over to a very general setting.

1 Introduction
Consider a discrete dynamical system
Tk+1 :SO(I]’C)’ k= 172a37"' . (1)

where ¢ : X — X is a continuous function on a topological space X. Such
systems arise in applied science when a continuous dynamical system is sam-
pled at discrete times, or when its phase—space trajectories cut a Poincaré
section. They also arise naturally in finance and computing. From a mathe-
matical point of view, one may regard any function that maps a set into itself
as the transition function ¢ of a dynamical system, and for that reason the
results of the theory of discrete dynamical systems may be applied in other
areas of mathematics, such as complex analysis and geometry.

Given a system (1), one is interested in the existence of fixed points
(p(z) = z), periodic points (¢™(x) = z), and their character (attracting,
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repelling, stable, unstable), and in the existence of various forms of chaos.
[1]

Poincaré was the first to study such systems in general context [5]. He
was motivated by the n—body problem. He himself noticed that systems that
admit time-reversal symmetries are special.

Definition 1.1 A time-reversal symmetry of the dynamical system (X, )

18 a homeomorphism o : X — X such that
a’lowoa:gfl.

Of course, (X, ¢) cannot admit such a symmetry unless ¢ is injective.

For example, let Y be the phase space of a classical n—body system (mov-
ing under their mutual gravitational attraction), and let X be the subspace
obtained by removing all collision orbits (in forward or backward time). Let
¢ : X — X be the map that advances the system for one unit of time, and let
o : X — X be the map that fixes each position and reverses each momentum
vector. Then o is a time-reversal symmetry of (X, ¢).

As another example, take billiards on an arbitrary smoothly—bounded,
convex billiard table, with boundary T'. Let X =T x (0, ), and let

e(p,0) = (', 0)

where p’ is the next point at which the ball strikes I', assuming that it leaves
I' at p making an angle of § with the counterclockwise tangent, and when ¢’
is the angle at which it leaves p’ after striking p’. In this case, the map

o:(p,0)— (p,m—0)

is a time-reversal symmetry.
Observe that in both examples

coo =1, (= the identity map of X)

i.e. the symmetry is an involution. Involutions are useful in group theory,
and the following lemma is basic, simple and well-known:

Lemma 1.2 Let G be a group and ¢ € G. Then the following are equivalent:
(1) There exists an involution 0 € G with oo = ¢~ 1;

(2) ¢ may be written as the product 7175 of two involutions.

Corollary 1.3 Let (X, ¢) be a dynamical system. Then it admits an invo-
lutive time-reversal symmetry if and only if ¢ may be written as the compo-
sition 1 o o of two involutions.



Motivated by this observation, and by the fact that one of us encountered
pairs of non—commuting involutions in diverse contexts, especially in con-
nection with approximation problems [2, 3, 4, 6], we decided to make a sys-
tematic study of the phenomenon. In the present paper, we discuss the
one—dimensional case.

2 One—dimensional systems

Let —o0 < a < c¢<b< 400, and X = (a,b), an interval on the real line.
There is a simple way to find involutions on X that fix ¢. Take any smooth
(=infinitely-differentiable) function f : (a,b) — (0, +o00) with the properties

fl(x) <0, a<z<e,
f'(e) =0, (2)

fl(x) >0, ¢<xz<b,
and

lim f(x) = lim f(x). (3)

zla z1h

Then, for each x € (a,b), define 7(z) by the equation

{z:f(2) = f(2)} = {w,7(2)}. (4)

In other words, if the level set f~'f(z) has two points, then 7(x) is the one
other than z, and in the other case (z = ¢), 7(z) = .

Clearly 7 is an involution, and provided f is not flat at ¢ (i.e. having all
derivatives zero), one can show that 7 is smooth, with Taylor expansion

7(z) ~c—(x—c) +by(x — ) +bg(x —c)® + -

about ¢, and one can express the coefficients b,, in terms of the Taylor coef-
ficients of f at c.

Of course, one can make this construction without assuming that f is
differentiable. All one needs is that each set f~!f(z) has no more than two
points, and then one may define an involution in the same way. In this way,
one obtains involutions on (a,b) that are, for instance, merely continuous,
or that are only once or twice differentiable. Some technical difficulties arise
if one wishes to study the phenomenon in this generality, so we content
ourselves here with the best-behaved case, the case when f is real-analytic.
We also assume (without loss in generality) that ¢ = 0.
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Proposition 2.1 Let f(z) = 2?™ + agp17°™ ™+ - - be real-analytic near 0
and suppose f is not even. Then the derived involution 7(x) = —x+byx®+- -
18 also real-analytic, and the first n with b, # 0 is even.

Proof: To see the real analyticity, we consider complex x near 0, but nonzero.
For such z, the equation

fly) = f(z)

has 2m solutions, and for small enough = we may unambiguously define 7(x)
as the solution y closest to —z. Since f'(z) # 0, 7(z) varies holomorphically
with x on a deleted neighbourhood of 0, and since it is bounded near 0, the
singularity at 0 is removable, and 7(x) is analytic near 0.

To see the rest, observe that since f is not even, it may be written as

f(l‘) :x2m+._.+a2n$2n+a2n+lm2n+l_*__._

with agp1 # 0. If agpyq > 0, then f(z) > f(—=x) for small positive x, and
hence

T(x) < —x ,2>0
T(x) <z ,2<0,

so that the first n with b, # 0 must be even. The case ag,; < 0 is treated
similarly.

Corollary 2.2 If f1, fo are two real analytic functions of the above type, and
7;(1 = 1,2) are the two involutions generated by them, and if 71 # T, then 0
is an unstable neutral point for the dynamical system ((a,b), 1 0 7).

Proof: Making a change of variables, one may assume that 7 (z) = —=z.
Then the corollary follows easily by graphical analysis [1].

Proposition 2.3 Locally, all one—dimensional real-analytic involutions arise
in the above way. That is, given a real—analytic involution T on an interval of
the real line, fixzing ¢ = 0, there exists some real-analytic function f defined
near 0, having the properties (2) and

near 0.



Proof: Let 7(z) = —x + bow? + b3z + - - - be an analytic involution fixing 0.
Take

f@) =@ -7 =a? 4
Then f(7(z)) = f(z), and f is 2-1 on a punctured neighbourhood of 0, as
desired. We immediately deduce:

Proposition 2.4 Let 0 be a fixed point of a one—dimensional real-analytic
dynamical system ((a,b), p). Let the involution T be a time—reversal symme-
try of the system, and 7(0) = 0. Then 0 is a neutral unstable fized point of
the system.

It is clear that the same analysis holds for one-dimensional complex holo-
morphic dynamical systems, in the neighbourhood of a fixed point.

As for non—analytic systems on the line, much of the analysis goes through
as in the real-analytic case, provided f is not flat at the fixed point ¢. In
particular, the above propositions remain valid if “real-analytic” is replaced
by “smooth” throughout the statements.

3 Time-reversal symmetry and instability, in
general.

The phenomenon observed in Proposition 2.4 occurs quite generally. Let
(X, @) be any discrete dynamical system, and p € X. Recall that p is an
attracting fixed point if ¢(p) = p and for each neighbourhood U of p there
exists a neighbourhood V' C U such that ¢" (V) C U,V n > 1, and ¢"(x) — p,
as n T +oo,V x € V. On the other hand, p is a repelling fixed point if ¢ is
bijective near p and p is an attracting fixed point for the system ¢~'. In
similar ways, attracting and repelling cycles are defined. Attractiveness is a
strong kind of stability, and repulsiveness is a strong kind of instability.

It is not normally the case that one and the same point is both attracting
and repelling, but it does occur, for instance when X is a discrete space.

Lemma 3.1 Let X be a T) space (i.e. singletons are closed), and let p be
an accumulation point of X. Then p cannot be both attracting and repelling
for the same system ¢ on X.

Proof: Immediate.

Proposition 3.2 Let X be a T space, and let the accumulation point p be
a cyclic point for a system (X, @), with cycle

C={p,ep),--,¢" '(n)}



Suppose T is a time—reversal symmetry of (X, ), with T(p) € C. Then the
cycle C s neither attracting nor repelling.

Proof: The symmetry 7 conjugates the map ¢ to its inverse ¢!, and ¢"
to ™" If C were an attracting cycle for ¢, then p would be an attracting
fixed point for ", and hence a repelling fixed point for ¢~". But conjugacy
preserves the repelling character of a fixed point, so that 7(p) and hence p
are also a repelling fixed points for ¢". By the lemma, this is impossible.
Thus C' is not attracting. Similarly (interchanging ¢ and ¢ '), one sees that
C is not repelling, either.

4 Examples

A simple example is the familiar fact that a 2-cycle in billiards cannot be
attracting.

For an example from linear algebra, consider 2 x 2 matrices over C,
regarding them as self-maps of C?. Let A,B be two such matrices, with
A? = B? = 1. As is well-known, one can make a change of coordinates and
conjugate both matrices at once to

_( 0 p (0 p!
A_<u10>’3_<u 0)

with p # 0. If the product
2
_(n 0
AB_<0f”>

is not an isometry, then it expands in one direction and contracts in another.
More generally, if X is a Riemannian manifold and ¢ : X — X is differ-
entiable with a fixed point p and a time-reversal symmetry 7 that fixes p,
then det(dy) = £1, and it follows that expansion in some directions must be
balanced by compression in others.
As a global example, consider C=Cu {oc} as the sphere $2, and let

az’ +bz+c
1(z) = dz2 +ez+ f

be a quadratic rational function. Define an involution 7 : S? — $? by

FHfR) = {z7(2)}-



Then 7 is an analytic function, and injective, and hence

()_az—l—ﬁ
TV vz 44°

Each involutive Mobius transformation arises in this way: given an involution

()_M
T® vz 46

take (cf. the proof of (2.3))

(7—04)2+(5—5)}2
vz + 6 '

1) = (=71 = {

Given two f’s, say f; and f5, one obtains two involutions 7; and 75, and
a system ¢ = 7y o 75 admitting a time-reversal symmetry 7. Of course, ¢ is
also a Mobius transformation. There are three cases:

1°. There is just one fixed point, p of ¢. Then 71(p) = 7o(p) = p and p is
a neutral point of ¢.

2°. There are two fixed points pq, ps of ¢, and 71 (p1) = p1. Then 71(p9) =
po and (by (3.2)) both points are neutral, and ¢ is an elliptic transformation.

3°. These are two fixed points py, ps of ¢, and 71 (p1) = pa. Then 71(p9) =
p1, and (3.2) does not prevent p; being an attractive fixed point for ¢ (as
long as ps is repelling, with reciprocal multiplier). This case actually occurs.
Take, for instance,

p(2) = 2z,
T1(z) = —%.

This example shows that the hypothesis 7(p) € C is necessary in (3.2).

Remark: It is well known that for systems obtained by discretising a clas-
sical Hamiltonian system, such as the n—body system mentioned above, the
principle of conservation of density—in—phase implies that no periodic point
can be attrcting or repelling.

Remark: Involutive time-reversal symmetries have other uses. A group
generated by two involutions is called dihedral, because the group of sym-
metries of a dihedral crystal is of this type. Finite or infinite, such a group
has a cyclic subgroup of index 2, and is “small” in the sense that the num-
ber of elements expressible using words of length n in the generators grows
linearly with n. As a result, tools such as ergodic theory, mean—value opera-
tors, covariant measures and the like are available. Such tools were used, for
instance, in [2, 3].



Remark: Finally, we note that the existence of time-reversal symmetries is
only interesting in categories finer than the topological. In the category of
sets, each bijection factors as the composition of two involutions, as may be
readily verified by considering the action of the bijection on its orbits (where
it is isomorphic to the action of a generator on some finite or infinite cyclic
group). The subject begins to present challenges when one requires at least
continuity of the factors. There may be trivial obstacles, such as the nonex-
istence of any (non-identity) involutions on the topological space X. So a
natural question would be to ask for a classification of the dynamical sys-
tems admitting an involutive time-reversal symmetry, under the assumption
that the involutions generate the automophism group of X, or some other
assumption that guarantees a reasonable supply of involutions.
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