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1 Introduction

Let (X,p) and (Y,0) be metric spaces. A function f : X — Y is (by
definition) bounded if the image of f has finite o-diameter. It is well-known
that if X is compact then each continuous f : X — Y is bounded. Special
circumstances may conspire to force all continuous f : X — Y to be bounded,
without Y being compact. For instance, if Y is bounded, then that is enough.
It is also enough that X be connected and that each connected component
of Y be bounded. But if we ask that all continuous functions f : X — Y,
for arbitrary Y, be bounded, then this requires that X be compact.

What about uniformly-continuous maps? Which X have the property
that each uniformly-continuous map from X into any other metric space
must be bounded?

We begin with an observation.

Lemma 1.1 Let (X, p) be a metric space. Then the following are equivalent:
(1) Each uniformly-continuous map from X into another metric space is
bounded.

(2) Each uniformly-continuous map from X into R (with the usual metric)
s bounded.
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Proof. Obviously (1) implies (2). The other direction follows from the facts
that: (a) f : X — Y is bounded if and only if each (or any one) of the
compositions

o(b,e)o f:x— o(b, f(z)) (beY)
is bounded, and (b) the composition o (b, e) is uniformly-continuous if f is

uniformly-continuous. .

This allows us to concentrate on the case Y = R, with the usual metric.

1.1 Example

Each uniformly-continuous function f : (a,b) — R, mapping a bounded open
interval to R, is bounded. Indeed, given such an f, choose § > 0 such that
the modulus of continuity ws(d) < 1, i.e.

[z —y| <= |f(z) - fly)l < 1.

Take n € N greater than (b—a)/d, h = (b—a)/n, and a; = a+ih (0 < i < n).
Then
lf(2)] < 1T+ max{|f(a;)]:1<i<n-—1}.

A very similar argument shows that if X is totally-bounded, then each
uniformly-continuous function from X is bounded. However, this is not the
whole story.

1.2 Example

Let X be the unit ball of £, i.e. the space of all bounded sequences {a,} of
complex numbers., with the metric induced by the supremum norm:

p<{a’n}7 {bn}> = sup |a’n - bn|
Suppose f : X — R is uniformly-continuous, and choose § > 0 such that

wr(6) < 1. Let m € N be the ceiling of 1/§. Then for each a = {a,} € X,
taking h = sup,, |a,|/m and b; = iha, we have

F@I < 1O+ D 1£(b) = f(bima] < 1F(0)] +m.
i=1
Thus f is bounded. However, X is not totally-bounded.
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2 Epsilon-step Territories

For e > 0 and a,b € X, we say that a is e-step-equivalent to b if there exist
points ag = a, ay, ..., a, = b, belonging to X, with p(a;_1,a;) < € for each
i. This defines an equivalence relation on X (for each fixed € > 0). We call
the equivalence classes e-step territories, and denote the territory of a point
a by T.(a), or just T'(a), if the value of € is clear from the context.

For e > 0 and a,b € X, we denote by s.(a,b) (or just s(a,b)) the infimum
of those n € N (if any) for which there exist ag = a, ay, ..., a, = b belonging
to X, with p(a;—1,a;) < e. Obviously, s(a,b) < +oo if and only if T'(a) =
T(b).

We say that a territory T'(a) is e-step-bounded if

sup s(a,r) < 400,
z€T(a)

and we call this supremum the e-step extent of T'(a).
We define a new ‘distance’ function on X x X, the e-step distance, by
setting d¢(a, b) equal to

inf {Z pla;_1,a;) : ag,ay,...,a, € X, a0 = a,a, =b, and p(a;_1,a;) < 6} ;

=1

whenever a,b € X. This has all the properties of a metric, except that its
value may be +o00. (One may obtain a proper metric by forming arctan od..)
The distance d, is a proper metric when restricted to any particular e-step
territory T'(a). In general, d.(a,b) is at least as large as the original p(a,b),
but d.(a,b) coincides with p(a,b) whenever p(a,b) < €, and hence d, induces
the same topology as p on T, and moreover a function f : X — R is p-
uniformly-continuous if and only if it is d.-uniformly-continuous. Indeed its
p-modulus of continuity coincides with its d.-modulus of continuity when the
argument is less than or equal to e.

One readily checks that a territory 7' is e-step-bounded if and only if its
d.~-diameter is finite. Moreover, its e-step extent lies between

d. — diam(7) and 94 2d, — dlam(T)'
€ €

We now state the main result.



Theorem 2.1 Let (X, p) be a metric space. Then the following are equiva-
lent:

(1) Each uniformly-continuous function f: X — R is bounded.

(2) For each e > 0, X has only a finite number of e-step territories, and each
territory is e-step-bounded.

Proof. (1) = (2): Suppose (1). Fix € > 0.
Suppose that X has infinitely-many e-step-territories. Let T, (for n =
1,2,3,... ) be distinct territories. Then the function f, defined by

n , xel,,
ﬂ@_{o,xeXNUfﬂ%

is uniformly-continuous and unbounded, which is impossible. Thus X has
only a finite number of e-step territories.

Now suppose that one of the e-step territories, say 7'(a), is not e-step-
bounded. Define

de(a,z) , ze€T(a),
“@_{ 0, z€X ~T(a).

Then g is uniformly-continuous on X, and unbounded, contradicting the
assumption. Thus each e-step territory is e-step-bounded, and (2) holds.

(2) = (1): Suppose (2), and fix f: X — R, uniformly-continuous.

Pick § > 0 such that w¢(6) < 1. With € = ¢, choose ay,...,a, € X such
that X = (Jj_, T'(a;). Then take N to be the maximum of the e-step extents
of the T'(a;), for 1 < j <n. Let M = max;|f(a;)|.

For each x € X, there exists j with € T'(a;), and then there are zy = a;,
Z1,. . Ty = ¢ belonging to X, with m < N and p(z;_1,z;) < e. Thus

[f(@)] <m+[f(a;)] <N+ M

Thus f is bounded. This proves (1). .



