Contact Courses Research Interests Publications List Curriculum Vitae Research Collaboration NUIM Maths Dept Logic Press Blog
Anthony G. O'Farrell: Reviews published in Zentralblatt f. Math




DE060841107 Zbl 1257.46023 receipt 2013-01-07 14:16:26
Mortini, Raymond
Generating sets for ideals of finite type in $H^\infty$
Bull. Sci. Math. 136, No. 6, 687-708 (2012).

DE060404747 Zbl 1278.37043 receipt 2013-10-07 13:20:25
Kelsey, Gregory A.
Mapping schemes realizable by obstructed topological polynomials
Conform. Geom. Dyn. 16, 44-80, electronic only (2012).

DE059560533 Zbl 1276.30008 receipt 2013-10-09 12:07:33
Abanin, A.V.; Khoi, Le Hai; Nalbandyan, Yu.S.
Minimal absolutely representing systems of exponentials for $A^{-\infty}(\varOmega)$
J. Approx. Theory 163, No. 10, 1534-1545 (2011).

DE06237836X Zbl 1287.46020 receipt 2014-02-18 14:50:15
Bouya, Brahim; Zarrabi, Mohamed
On closed ideals in the big Lipschitz algebras of analytic functions
Bull. Sci. Math. 137, No. 5, 575-583 (2013).

DE062121606 Zbl 1290.46047 receipt 2014-04-08 13:35:29
Sarkar, Jaydeb; Sasane, Amol; Wick, Brett D.
Doubly commuting submodules of the Hardy module over polydiscs
Stud. Math. 217, No. 2, 179-192 (2013).

DE062018294 Zbl 1296.37001 receipt 2014-09-15 14:06:01
Catsigeras, Eleonora
Teori´a Ergo´dica de los Sistemas Dina´micos Discretos
Montevideo: Universidad de la Repu´blica; Montevideo: M. D. Editora (ISBN 978-9974-0-0949-3/pbk; 978-9974-0-0950-9/ebook). x, 334~p. (2013).

DE059490798 Zbl 1307.37004 receipt 2015-02-05 13:36:59
Dudko, Artem
Characters on the full group of an ergodic hyperfinite equivalence relation
J. Funct. Anal. 261, No. 6, 1401-1414 (2011).

DE064384938 Zbl pre06438493 receipt 2015-09-11 13:30:45
Merino-Cruz, H\'ector; Wawrzy\'nczyk, Antoni
Closed ideals in a new class of algebras of holomorphic functions on the disc
Commentat. Math. 54, No. 1, 29-37 (2014).

DE064881989 Zbl pre06488198 receipt 2016-01-15 20:07:04
Boggess, Al; Dwilewicz, Roman J.; Slodkowski, Zbigniew
Hartogs-type extension for tube-like domains in $\mathbb C^2$
Math. Ann. 363, No. 1-2, Article ID 1161, 35-60 (2015).

Revised 15-1-2016. AOF.